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INTRODUCTION

ABSTRACT

Background: Mesenchymal stem cells (MSCs) possess remarkable regenerative and
immunomodulatory capabilities, largely attributed to their intrinsic stemness
properties regulated by transcription factors such as OCT-4, SOX-2, NANOG, and
KLF-4. However, in vitro culture under normoxia often leads to stemness decline.
Hypoxic preconditioning has been proposed to preserve stemness, though the optimal
duration of exposure remains unclear. This study aimed to evaluate the time-dependent
effects of hypoxia on the expression of core stemness-related transcription factors in
human umbilical cord Wharton’s jelly-derived MSCs. Methods: MSCs (passage 5)
obtained from the Stem Cell and Cancer Research (SCCR) Laboratory were cultured
under hypoxia (5% O2) for 0, 4, 6, 10, 12, and 24 hours. Gene expression of OCT-4,
SOX-2, NANOG, and KLF-4 was quantified by qRT-PCR using GAPDH as a
reference. Morphological changes were observed via phase-contrast microscopy.
Statistical analysis was performed using one-way ANOVA with Tukey’s post hoc test.
Results: Hypoxic exposure induced a significant, time-dependent upregulation of
OCT-4, SOX-2, and NANOG, with peak expression at 12 hours (approximately 13-,
7-, and 5-fold increases, respectively; p < 0.05). KLF-4 expression showed a modest
elevation but was not statistically significant. Prolonged hypoxia (24 hours) resulted
in a marked decline in all gene expressions toward baseline levels, accompanied by
cell rounding and detachment. These findings indicate that short-term hypoxia
enhances MSC stemness, while extended exposure triggers stress-related responses.
Conclusion: Controlled short-term hypoxia (approximately 12 hours at 5% O:)
optimally enhances MSC stemness gene expression without compromising
morphology or viability. This duration represents an effective preconditioning window
for maintaining MSC multipotency and may improve the consistency and therapeutic
efficacy of MSC-based applications.

Keywords: Mesenchymal stem cells, hypoxia, stemness, OCT-4, SOX-2, NANOG,
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Mesenchymal stem cells (MSCs) are adult multipotent progenitor cells that can differentiate into
a variety of cell types, including osteoblasts, adipocytes, chondrocytes, and myocytes.! They are
typically isolated from diverse tissues such as bone marrow, adipose tissue, and umbilical cord, and
possess remarkable regenerative and immunomodulatory capacities.! These features make MSCs one
of the most extensively studied stem cell types in the field of regenerative medicine. In addition to their
differentiation potential, MSCs exert therapeutic effects largely through their paracrine signaling, by
secreting a broad spectrum of cytokines, growth factors, and extracellular vesicles that modulate
inflammation, promote angiogenesis, and stimulate tissue repair.> The biological activity and clinical
efficacy of MSCs, however, are closely related to their intrinsic “stemness” — the cellular ability to
self-renew and maintain multipotency during proliferation and differentiation.’
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The molecular foundation of MSC stemness is primarily regulated by a network of transcription
factors that control pluripotency and lineage commitment.* Among these, octamer-binding
transcription factor 4 (OCT-4), sex-determining region Y-box 2 (SOX-2), and homeobox protein
NANOG constitute the core pluripotency triad, functioning cooperatively to sustain the
undifferentiated state of stem cells and repress differentiation pathways.> Kruppel-like factor 4 (KLF-
4), although not a core member, synergizes with these transcription factors to maintain the self-
renewal phenotype and facilitate reprogramming of somatic cells into induced pluripotent stem cells
(iPSCs). ¢ The expression of these genes serves as a molecular hallmark of stemness and can be
modulated by intrinsic and extrinsic cues within the cellular microenvironment. ’ Understanding the
regulatory mechanisms that influence their expression is therefore critical for optimizing MSC-based
therapies.

One of the most important extrinsic regulators of stem cell behavior is the microenvironmental
oxygen level, or oxygen tension. ® In vivo, MSCs naturally reside in a relatively hypoxic niche, with
oxygen levels typically ranging from 1% to 7%, depending on tissue type and vascularization. ®° In
contrast, conventional in vitro culture systems are maintained under normoxic conditions
(approximately 21% O:), which do not accurately mimic the physiological oxygen environment of
stem cells. ® This discrepancy can lead to a gradual decline in stemness, reduced proliferation, and
premature differentiation during extended culture. '° Consequently, culturing MSCs under controlled
hypoxic conditions has been proposed as a strategy to maintain or enhance their stemness,
proliferation, and therapeutic potency. '° Numerous studies have shown that hypoxia promotes MSC
survival, enhances colony-forming efficiency, and augments their paracrine secretion profiles. '3

The beneficial effects of hypoxia are primarily mediated through the stabilization of hypoxia-
inducible factor-1 alpha (HIF-1a), a transcription factor that acts as the master regulator of cellular
responses to low oxygen tension. '* Under hypoxic conditions, HIF-lo escapes proteasomal
degradation, accumulates in the nucleus, and activates downstream target genes involved in
metabolism, angiogenesis, and cell survival. '*'* Importantly, HIF-1a signaling has also been
implicated in the regulation of pluripotency-associated genes such as OCT-4, SOX-2, and NANOG,
linking oxygen sensing directly to the control of stem cell fate. '*!> These findings suggest that
hypoxia can serve as a physiological cue to preserve or even enhance the stemness of MSCs. 313

However, despite growing evidence of hypoxia’s beneficial influence on MSC biology, there
remains significant variability among studies regarding the optimal duration of hypoxic exposure.
Some reports indicate that short-term or transient hypoxia enhances proliferation and upregulates
stemness-related transcription factors, while prolonged or chronic hypoxia can trigger cellular stress,
mitochondrial dysfunction, or even apoptosis.!®!® These discrepancies highlight a critical gap in
understanding how the time-course of hypoxia modulates the expression of stemness-associated
genes. !” Determining the precise window during which hypoxia most effectively promotes stemness
is essential for improving the reproducibility and efficacy of hypoxic preconditioning strategies in
MSC culture systems.

Therefore, the present study was designed to systematically evaluate the time-dependent effects
of hypoxia on the expression of key stemness transcription factors — OCT-4, SOX-2, NANOG, and
KLF-4 — in cultured MSCs. By assessing gene expression profiles across multiple time points of
hypoxic exposure, this study aims to identify the optimal duration that maximally enhances MSC
stemness while minimizing potential adverse effects of prolonged hypoxia. The findings are expected
to contribute to the refinement of hypoxic preconditioning protocols, ultimately improving the
therapeutic performance of MSCs in regenerative medicine and cell therapy applications.
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MATERIALS AND METHODS
Cell Source and Culture Conditions

Human umbilical cord Wharton’s jelly-derived mesenchymal stem cells (MSCs) passage 5
were obtained from the Stem Cell and Cancer Research (SCCR) Laboratory, where they were isolated
and cultured under sterile conditions following standard protocols. The cells were characterized based
on their spindle-shaped morphology and confirmed positive for typical MSC surface markers (CD73,
CD90, CD105) and negative for hematopoietic markers (CD34, CD45) using flow cytometry.

Cells were maintained in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10%
fetal bovine serum (FBS), 1% penicillin—streptomycin, and incubated at 37°C in 5% CO.. Two
oxygen conditions were established:

1. Normoxia (control): 21% Oz, 5% COe..
2. Hypoxia (experimental): 5% O2, 5% CO:, maintained using a hypoxic chamber.

Cells were plated at a density of 1x10° cells/well in 24-well plates and allowed to adhere for 24
hours before exposure to the experimental oxygen conditions.

Hypoxic Exposure and Sample Collection

After cell attachment, MSCs were exposed to hypoxia for 0, 4, 6, 10, 12, and 24 hours. Early
intervals (4—6 h) were chosen to assess acute transcriptional activation, including hypoxia-inducible
factor (HIF) signaling and initial changes in adhesion molecules and secretome profiles'%.
Intermediate durations (10—12 h) were selected to evaluate mid-term adaptations, such as enhanced
stemness markers, proliferation, and paracrine activity'*. The prolonged interval (24 h) allowed
assessment of sustained hypoxic effects on cell viability, adhesion, and maximal HIF-mediated gene
expression®. This design enables identification of the optimal hypoxic preconditioning window for
therapeutic applications.

The 0-hour time point represented baseline (normoxic control). At each time point, cells were
harvested by trypsinization and washed twice with cold phosphate-buffered saline (PBS). The cell
pellets were immediately immersed in RNAlater™ Stabilization Solution (Thermo Fisher Scientific)
and stored at —80°C until RNA extraction.

RNA Extraction and cDNA Synthesis

Total RNA was isolated using TRIzol reagent following the manufacturer’s instructions.
RNA concentration and purity were determined by spectrophotometric analysis using a Thermo
Scientific™ Multiskan™ SkyHigh Microplate Spectrophotometer using the pDrop™ at absorbance
ratios A260/A280 and A260/A230. Only RNA samples with ratios between 1.8-2.0 were used for
further analysis. Subsequently, 1 pg of total RNA from each sample was reverse-transcribed into
complementary DNA (cDNA) using a High-Capacity cDNA Reverse Transcription Kit (Applied
Biosystems) according to the manufacturer’s protocol. The resulting cDNA was stored at —20°C until
use.

Quantitative Real-Time PCR (qPCR) Analysis

Quantitative real-time PCR (qPCR) was conducted using a Rotor-Gene™ Q Real-Time PCR
System (Qiagen) with SYBR™ Green PCR Master Mix according to the manufacturer’s protocol.
Gene-specific primers were used to amplify OCT-4, SOX-2, NANOG, and KLF-4, while GAPDH
was employed as the endogenous reference gene for normalization. Each reaction contained 10 pL.
SYBR Green Mix, 1 pL forward primer (10 uM), 1 puL reverse primer (10 uM), 2 uL cDNA, and 6
uL nuclease-free water, in a total volume of 20 puL. The thermal cycling conditions were: Initial
denaturation 95°C for 10 minutes, and 40 cycles of 95°C for 15 seconds, 60°C for 60 seconds. The
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relative expression of each gene was calculated using the 224 method, normalizing to GAPDH and
comparing each hypoxia time point to the normoxic control (0 hour).

Statistical Analysis

All experiments were conducted in triplicate (n = 3), and the results were expressed as mean
+ standard deviation (SD). Statistical analysis was performed using one-way ANOVA, followed by
Tukey’s post hoc test for multiple comparisons. A p-value of <0.05 was considered statistically
significant. Data processing and statistical analyses were carried out using IBM SPSS Statistics
version 24.0 (IBM Corp., Armonk, NY, USA).

RESULT AND DISCUSSION

Hypoxia Modulates the Expression of Stemness-Related Genes in MSCs

Exposure of mesenchymal stem cells (MSCs) to hypoxic conditions (1-5% O:) resulted in a
time-dependent modulation of stemness-associated transcription factors, including OCT-4, SOX-2,
NANOG, and KLF-4 (Figure 1). At baseline (0 h), the relative expression levels of all four genes
were low and comparable. A significant upregulation was observed beginning at 4 hours of hypoxia,
with OCT-4 showing the most prominent increase (~3-fold; p < 0.05). SOX-2 and NANOG also
exhibited moderate elevation at this time point, whereas KLLF-4 expression remained low. By 6—10
hours of hypoxic exposure, all genes maintained higher expression compared to normoxia, though
with varying magnitudes. The peak induction was observed at 12 hours, where OCT-4 expression
increased approximately 13-fold, followed by SOX-2 (~7-fold) and NANOG (~5-fold) relative to
control (p < 0.05). KLF-4 expression also rose modestly at 12 hours but did not reach statistical
significance. Interestingly, prolonged hypoxia for 24 hours resulted in a sharp decline in the
expression of all four genes, returning to near-baseline levels. This suggests a transient enhancement
of stemness gene expression under short-term hypoxia, with 12 hours identified as the optimal
exposure duration for maintaining or enhancing MSC stemness characteristics.

16 1 % ENANOG
14 A
12 A

10 4

Relative fold expression
[+]

Oh 4h 6h 10h 12h 24h

Time of hypoxia

Figure 1. Time-dependent effect of hypoxia on stemness gene expression in mesenchymal stem cells
(MSCs). Relative fold expression of OCT-4, SOX-2, NANOG, and KLF-4 was measured by quantitative
real-time PCR (qPCR) after exposure to hypoxic conditions (1-5% O2) for 0, 4, 6, 10, 12, and 24 hours.
Gene expression levels were normalized to GAPDH as an internal control, and the results are presented
as mean + SD from three independent experiments (n = 3). *) indicate significant differences compared
to normoxic control (0 h) (p < 0.05, one-way ANOVA followed by Tukey’s post-hoc test).
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Morphological alterations of MSCs under hypoxic exposure

Mesenchymal stem cells (MSCs) exhibited distinct morphological responses to varying
durations of hypoxia (Figure 2). Under normoxic conditions (0 h, Figure Xa), MSCs showed a typical
fibroblast-like, spindle-shaped morphology with strong adherence and homogeneous distribution.
After 4 and 6 hours of hypoxia (Figure 2b—c), cells remained elongated and attached, with no obvious
morphological deterioration, indicating early tolerance to low oxygen tension. At 10 hours of hypoxic
exposure (Figure 2d), MSCs still maintained their characteristic spindle-like shape, although a slight
reduction in cell density was observed. By 12 hours (Figure 2¢), several cells began to exhibit
morphological stress features, such as partial rounding and decreased adherence. Prolonged hypoxia
for 24 hours (Figure 2f) resulted in marked cellular shrinkage and detachment, suggesting decreased
cell viability and tolerance at extended exposure durations. These observations suggest that short-
term hypoxia (<10 h) is well tolerated by MSCs and may preserve their characteristic morphology,
while prolonged hypoxia (>12 h) induces visible morphological changes consistent with stress or
early apoptosis.

Figure 2. Morphological changes of mesenchymal stem cells (MSCs) under different durations of hypoxic
exposure. Representative phase-contrast micrographs show MSCs exposed to hypoxia for (a) 0 h, (b) 4 h, (c) 6
h, (d) 10 h, (e) 12 h, and (f) 24 h. Cells maintained their typical spindle-shaped morphology at shorter exposures
(0-10 h), while prolonged hypoxia (>12 h) led to reduced cell density and signs of stress or detachment. Scale
bar = 100 um.

DISCUSSION

This study demonstrated that hypoxic exposure induces time-dependent morphological
alterations in mesenchymal stem cells (MSCs), reflecting progressive cellular adaptation and stress
responses at the molecular level. During the early phase of hypoxia (0—10 h), MSCs maintained their
characteristic fibroblast-like, spindle-shaped morphology, indicating that moderate hypoxic stress
may enhance their physiological stemness. However, prolonged hypoxic exposure (>12 h) resulted
in cell shrinkage, rounding, and detachment, suggestive of cytoskeletal reorganization, impaired
adhesion, and possible initiation of apoptosis.
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At the molecular level, MSCs respond to decreased oxygen tension primarily through the
activation of hypoxia-inducible factor-1a (HIF-1a). '8! Under hypoxia, HIF-10 escapes proteasomal
degradation and translocate to the nucleus, where it activates transcription of genes involved in
angiogenesis (e.g., VEGF), glycolytic metabolism (e.g., GLUTI, LDHA), and cell survival (e.g.,
BCL2).* This adaptive response supports cell survival during short-term hypoxia by enhancing
anaerobic ATP production and reducing oxidative stress. '* These mechanisms explain why MSCs
retained normal morphology and adhesion within the first 6-10 hours of hypoxic incubation. 2!
Beyond 12 hours, however, the accumulation of reactive oxygen species (ROS) and metabolic
byproducts likely surpasses the antioxidant capacity of the cells. 17! Persistent activations of HIF-1a
may also shift toward a maladaptive state, promoting pro-apoptotic signalling via BNIP3, BAX, and
Caspase-3 pathways. '*?? Concurrently, cytoskeletal components such as actin and tubulin become
destabilized, leading to the observed morphological rounding and detachment. ** Prolonged hypoxias
may also suppress the expression of adhesion molecules (e.g., integrins, VCAM-1) and extracellular
matrix regulators, thereby reducing cell-substrate interactions. **

Interestingly, mild hypoxia (typically 1-5% O: for 612 hours) has been widely reported to
enhance MSC proliferation, paracrine secretion, and stemness gene expression (OCT4, SOX2,
NANOG). ??%% These effects are mediated by transient HIF-1a activation that upregulates autocrine
factors like FGF2 and IGF-1, contributing to cell renewal and repair mechanisms. In contrast,
excessive or prolonged hypoxia (>12-24 h) triggers a metabolic shift toward sustained glycolysis,
mitochondrial dysfunction, and energy depletion, leading to loss of viability and morphological
integrity. 2° The morphological evidence in this study aligns with these molecular events: spindle-
shaped cells at <10 h represent cytoprotective adaptation, while the rounded, detached cells at >12 h
reflect energy failure and onset of hypoxia-induced apoptosis. 2’ These findings support the concept
that controlled, short-term hypoxia serves as a preconditioning strategy to enhance MSC resilience
and secretory function, whereas prolonged oxygen deprivation is detrimental.?®

Overall, these results highlight the biphasic role of hypoxia in MSC biology—protective and
stemness-promoting under mild, transient conditions, but cytotoxic when sustained. Understanding
the molecular thresholds between adaptive and detrimental hypoxia is crucial for optimizing hypoxic
preconditioning protocols in regenerative medicine, particularly in enhancing the therapeutic potency
of MSCs and their secretome.

CONCLUSION

This study demonstrates that hypoxia exerts a biphasic effect on mesenchymal stem cells
(MSCs), enhancing stemness-related gene expression during short-term exposure while inducing
stress responses with prolonged treatment. Specifically, a 12-hour hypoxic exposure (5% O2)
significantly upregulated OCT-4, SOX-2, and NANOG expression, indicating optimal activation of
the pluripotency network. However, beyond this duration, sustained hypoxia led to morphological
alterations and decreased gene expression, suggesting the onset of cellular stress and reduced
viability. These findings underscore the importance of precisely controlling hypoxic duration to
harness its beneficial effects while avoiding cytotoxic consequences. Establishing an optimal hypoxic
preconditioning window can improve MSC-based therapeutic strategies by preserving stemness,
enhancing paracrine activity, and promoting overall regenerative potential.
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