

RESEARCH ARTICLE

OPEN ACCESS

Preliminary Study on Long Fixation in Histological Preparations of Internal Organs of Sprague Dawley Rats

Galang Prahanarendra¹, Devy Ariany^{2*}, Nurlaelly Mida Rachmawati³, Luluk Hermawati⁴, Ghea Farmaning Thias Putri⁵

*Correspondence:
devyariany.patologi@gmail.com

¹Medical Study Program, Faculty of Medicine, Syarif Hidayatullah State Islamic University, Jakarta, Indonesia.

²Medical Study Program, Faculty of Medicine, Universitas Islam Negeri Syarif Hidayatullah Jakarta, South Tangerang, Indonesia.

³Department of Biochemistry, Faculty of Medicine, Syarif Hidayatullah State Islamic University, Jakarta, Indonesia.

⁴Department of Medical Biology, Faculty of Medicine, Sultan Ageng Tirtayasa University, Banten, Indonesia.

⁵Department of Medical Biology, Faculty of Medicine, Sultan Ageng Tirtayasa University, Banten, Indonesia.

Submission October 20, 2025

Accepted December 06, 2025

Available online on December 22, 2025

©2025 The Authors. Published by Stem Cell and Cancer Research, Semarang, Indonesia. This is an open-access article under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike License ([CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/)), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ABSTRACT

Background: Histotechnology is a series of processes ranging from tissue handling to the preparation of slides that can be observed under a microscope. One crucial stage in this process is fixation, which serves to preserve the structure and morphology of the tissue as close as possible to its original physiological state. However, prolonged fixation duration may lead to tissue hardening, dissolution, and structural damage. **Objective:** This study aims to obtain supporting data for the development of a standard operating procedure (SOP) in histotechnology that can be applied in the animal house and histology laboratories of the Faculty of Medicine, Syarif Hidayatullah State Islamic University Jakarta. **Results:** The results showed that fixation for three weeks caused morphological damage to the kidney, liver, and pancreas of Sprague Dawley rats. The findings included tissue perforation in all three organs, endothelial nuclear damage in the kidney, central vein wall damage in the liver, and cellular disintegration in the pancreatic islets of Langerhans. **Conclusion:** Based on these findings, it can be concluded that a fixation duration of three weeks does not produce optimal histological images and therefore cannot be used as a reference for establishing a standard histotechnology SOP in the laboratory of the Faculty of Medicine, Syarif Hidayatullah State Islamic University Jakarta.

Keywords: histotechnology, prolonged fixation, kidney, liver, pancreas, Sprague Dawley.

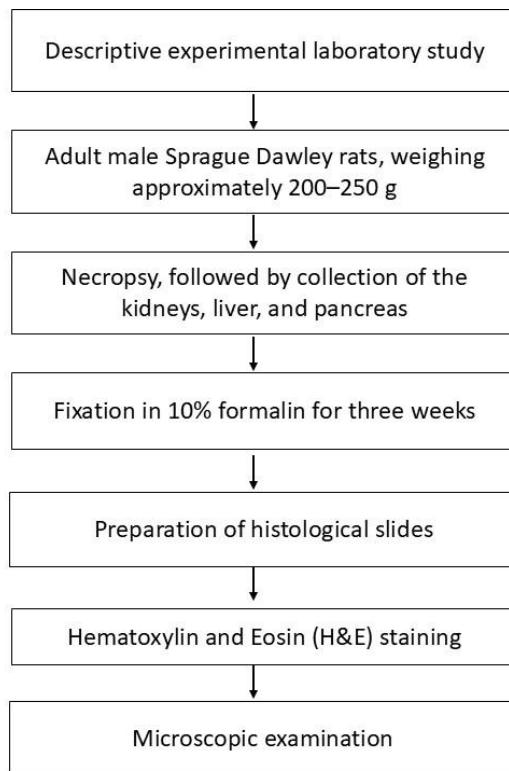
INTRODUCTION

Histotechnology is a series of laboratory procedures designed to process biological tissues for microscopic examination. The main stages of this process include tissue grossing, fixation, dehydration, clearing, embedding, thin sectioning (microtomy), and staining using dyes such as hematoxylin and eosin¹. Through histotechnological techniques, cellular and tissue structures can be observed in detail, allowing the identification of pathological changes that support disease diagnosis^{2,3}.

Among these stages, fixation plays a particularly crucial role. The purpose of fixation is to preserve tissue morphology as close as possible to its normal physiological state by halting autolysis and enzymatic activities that can damage the tissue^{2,4}. The success of fixation is influenced by various technical factors, including the type of fixative solution, pH and buffering system, the ratio of fixative volume to tissue (ideally $\geq 20:1$), tissue thickness, as well as fixation duration and temperature⁵. Failure to optimize one of these factors such as excessive tissue thickness or insufficient fixative volume may hinder reagent penetration, leading to suboptimal fixation in the deeper tissue layers⁶.

However, excessive fixation duration (over-fixation) can also produce undesirable artifacts. This condition may cause tissue hardening, shrinkage, loss of antigenic reactivity, and damage to delicate tissue elements, ultimately reducing staining quality and microscopic interpretation^{4,5}. A study by¹⁹ on cat ovarian tissues demonstrated that variations in fixation time affected both tissue morphology and immunohistochemical staining sensitivity. These findings highlight that, in addition to the type of fixative, fixation duration must also be optimized based on the tissue type and analytical objectives. Nevertheless, most histotechnology protocols emphasize short fixation periods, while evidence on prolonged fixation remains limited. In educational laboratories, tissues are often stored in fixative for extended durations due to logistical constraints, including fixation periods of up to three weeks, yet the histological impact of such practices has not been clearly documented.

In the context of medical education, accredited laboratories are required to establish standardized and validated Standard Operating Procedures (SOPs) for all technical processes, including histotechnology. A well-developed SOP should be supported by adequate laboratory infrastructure, competent technical personnel, up-to-date scientific references, and a consistent quality control system^{4,18}. At the Faculty of Medicine and Health Sciences (FKIK), Syarif Hidayatullah State Islamic University Jakarta, there is currently no standardized SOP specifically regulating tissue fixation procedures, despite the increasing number of student research projects involving tissue and animal models.

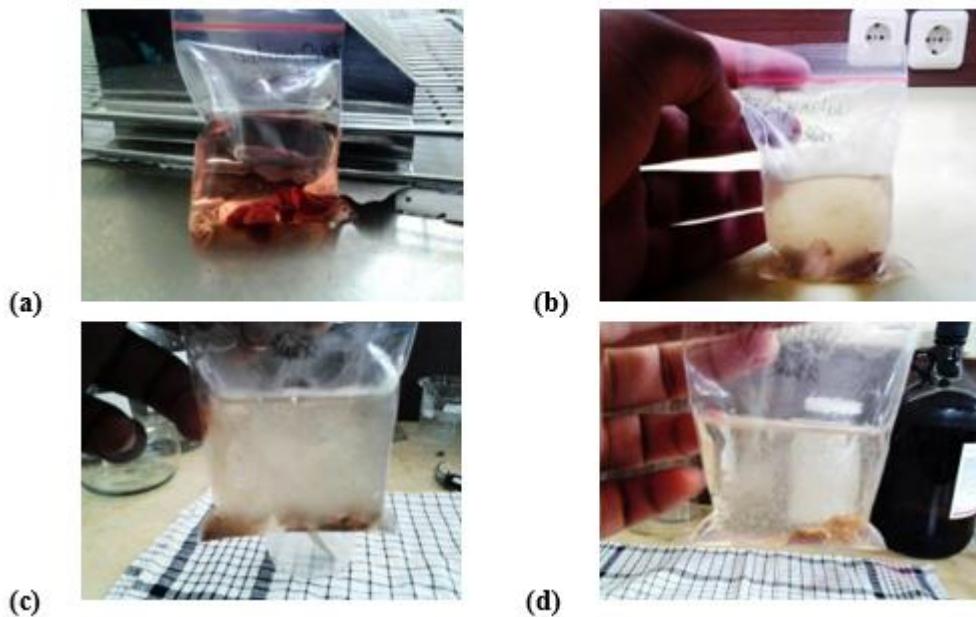

Therefore, the formulation and preliminary validation of histotechnology procedures are essential, including determining the optimal fixation duration for internal organs such as the kidney, liver, and pancreas of Sprague Dawley rats. In this study, a three-week fixation duration was selected to represent an extended yet practically relevant timeframe commonly encountered in student-based laboratory research. With robust empirical data, the resulting SOP is expected to enhance the consistency and validity of histological preparations in the animal house and histology laboratories of FKIK, Syarif Hidayatullah State Islamic University Jakarta. This study aims to evaluate the effect of fixation duration on tissue quality as a foundation for developing histotechnology SOP recommendations at the institution.

MATERIALS AND METHODS

This descriptive laboratory study aimed to evaluate the effects of long-term fixation on the histological quality of the kidney, liver, and pancreas of Sprague Dawley rats. One male Sprague Dawley rat aged 80 days with an average body weight of 180–200 g was obtained from the Animal House of the Faculty of Medicine and Health Sciences, Syarif Hidayatullah State Islamic University Jakarta. All procedures followed ethical guidelines for animal research. After euthanasia, the organs were collected through necropsy and processed for histological examination. Each organ was divided into three tissue sections (A, B, and C), which were fixed in 10% formalin and processed for histological evaluation after the first, second, and third weeks of fixation, respectively.

Tissues were fixed in 10% formalin for three weeks at room temperature with a fixative-to-tissue ratio of 20:1. After fixation, samples were dehydrated through graded ethanol, cleared with xylene, embedded in paraffin, and sectioned at 4–5 μ m thickness using a microtome. Sections were mounted on glass slides, dried, and stained with Hematoxylin and Eosin (H&E). The stained slides were examined under a light microscope at 40 \times and 400 \times magnifications to assess tissue integrity, cell boundaries, nuclear condition, and signs of autolysis or shrinkage. Slide evaluation was performed by a single trained examiner under the direct supervision of an experienced faculty

member with expertise in histopathology. Observations were described qualitatively and supported by photomicrographic documentation.


Figure 1. Study Methodology Flowchart

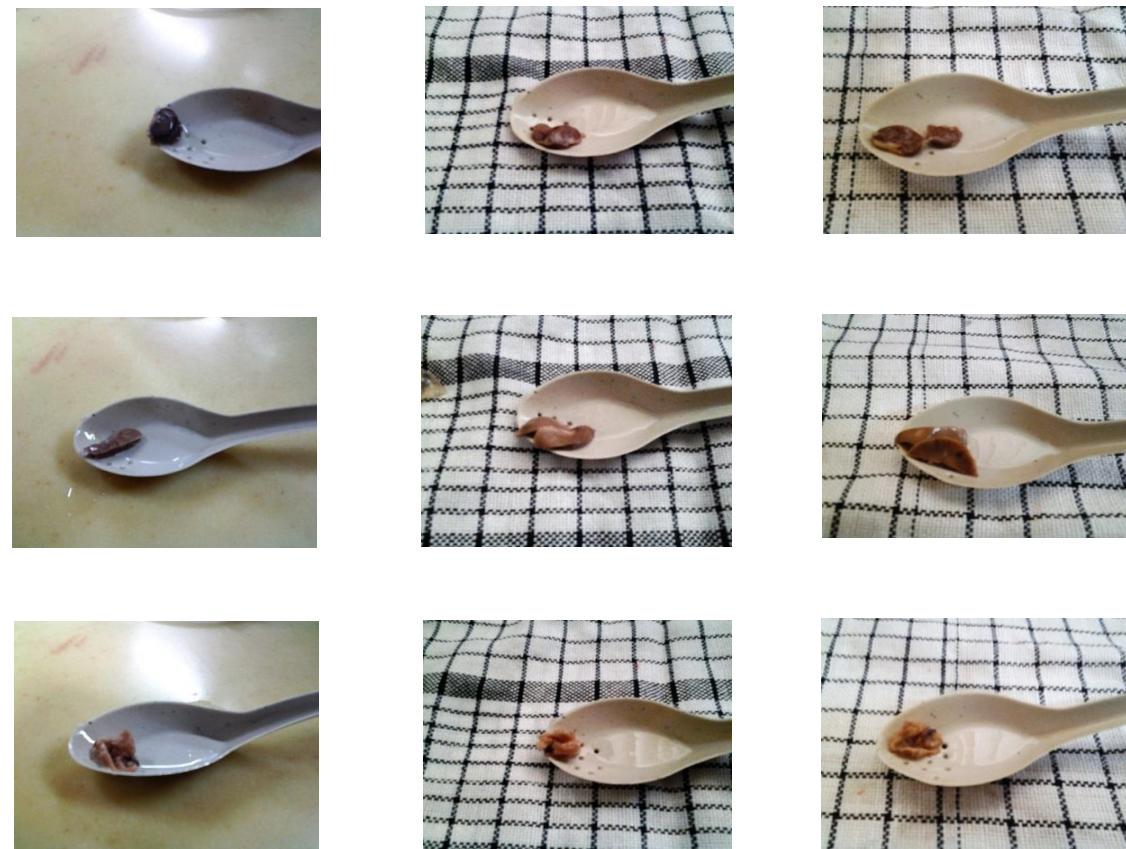
RESULTS

Macroscopic Findings

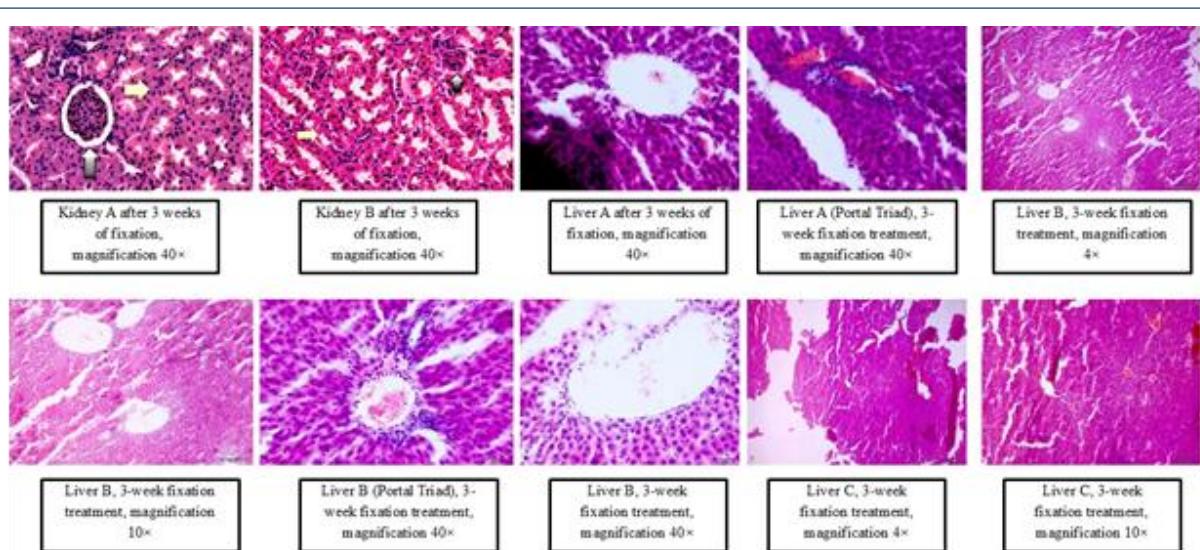
After prolonged fixation in 10% formalin, macroscopic changes were observed in the kidney, liver, and pancreas of Sprague Dawley rats. All tissues became progressively firmer and denser over the fixation period, indicating protein denaturation and excessive cross-link formation induced by formaldehyde exposure. The fixative solution, initially clear, gradually became turbid and contained small tissue fragments, suggesting partial protein dissolution and structural degradation during extended fixation. These findings are consistent with previous reports indicating that prolonged formalin fixation may result in excessive tissue hardening and solution turbidity due to the release of protein components into the fixative medium^{2,7}.

Organ-specific differences were observed during macroscopic examination. The pancreas appeared softer and more fragile compared to the kidney and liver throughout the fixation period. In contrast, the kidney and liver exhibited progressively paler surfaces and increased tissue firmness with longer fixation duration. These differences may be attributed to the higher proteolytic enzyme content of pancreatic tissue, which predisposes it to faster degradation, whereas prolonged formalin exposure in the kidney and liver promotes water withdrawal and excessive protein cross-linking, resulting in increased tissue rigidity⁸.

Figure 2. Tissue samples immersed in 10% formalin fixative at 2–8°C: (a) after necropsy, (b) after the first week, (c) after the second week, and (d) after the third week.


Organ-Specific Observations

Organ-specific differences were observed during macroscopic examination. The pancreas appeared softer and more fragile compared to the kidney and liver throughout the fixation period. In contrast, the kidney and liver exhibited progressively paler surfaces and increased tissue firmness with longer fixation duration. These differences may be attributed to the higher proteolytic enzyme content of pancreatic tissue, which predisposes it to faster degradation, whereas prolonged formalin exposure in the kidney and liver promotes water withdrawal and excessive protein cross-linking, resulting in increased tissue rigidity⁸.


Table 1. Week Fixation Results

No.	Organ Code	Consistency with Theory	General Appearance	Structural Integrity	Intercellular Space	Cell Shrinkage	Cell Autolysis
1	Kidney A	C	D	V	L	✓	Sg
2	Kidney B	C	D	V	L	✓	NSg
3	Liver A	C	D	UI	L	✓	NSg
4	Liver B	C	D	UI	L	✓	NSg
5	Liver C	C	D	V	L	✓	Sg
6	Pancreas A	C	D	V	L	✓	Sg
7	Pancreas B	C	D	V	L	✓	Sg
8	Pancreas C	C	D	V	L	✓	Sg

Notes: C = consistent; I = inconsistent; G = good; D = damaged; V = visible; UI = unclear / unidentifiable; O = orderly; L = loose; Sg = significant; NSg = not significant.

Figure 3. Tissue sections of the kidney, liver, and pancreas fixed for (a) one week, (b) two weeks, and (c) three weeks.

Figure 4. Representative histopathological images of the kidney, liver, and pancreas observed under different magnifications following a 3-week fixation period.

DISCUSSION

Fixation is a crucial initial step in the success of histotechnological processing, serving to preserve tissue morphology as close as possible to its original physiological condition². In this study, tissue samples from Sprague Dawley rats were fixed in 10% formalin for three weeks to evaluate the effects of prolonged fixation duration on histological quality. The findings demonstrated that fixation time had a noticeable impact on both macroscopic and microscopic tissue characteristics. Macroscopically, tissues appeared firmer and more rigid, while microscopically, structural damage and loss of cellular integrity were evident.

During the fixation process, tissues undergo dehydration due to the hypertonic nature of formalin, which draws water out of the cells and replaces it with the fixative solution¹⁰. This leads to tissue hardening and paler coloration¹¹. The fixative gradually became turbid due to the dissolution of blood residues and tissue fragments¹². These findings are consistent with previous studies reporting that prolonged exposure to formalin can cause color alteration and increased tissue stiffness due to excessive protein cross-linking^{7,13}. Additionally, the progressive turbidity of the fixative indicates ongoing dissolution of tissue proteins and lipids during fixation. This phenomenon aligns with the principle of over-fixation, in which formalin continuously reacts with amino and carboxyl groups in proteins, resulting in excessively hard and brittle tissues that are difficult to section microscopically⁹.

Microscopic evaluation revealed that three weeks of fixation caused cellular degradation in all examined organs. In the kidney, loss of glomerular endothelial integrity and widening of intercellular spaces were observed. The liver exhibited damage to the central vein wall and loss of the characteristic radial hepatocyte arrangement, while the pancreas showed cytoplasmic disintegration and indistinct cellular boundaries, particularly in the islets of Langerhans^{14,15,16}. These alterations suggest that prolonged fixation disrupts the osmotic balance within tissues. The reactive nature of formalin toward proteins and enzymes induces excessive denaturation and subcellular damage¹⁹. This observation is consistent¹⁹ who reported that fixation exceeding 48 hours may alter tissue antigenicity and reduce hematoxylin-eosin staining quality.

Variations in tissue response reflect differences in histological composition and enzymatic content among organs. The pancreas exhibited more rapid degradation than the kidney and liver due to its high content of proteolytic enzymes, which accelerate autolysis if enzymatic activity is not fully inhibited during fixation¹⁷. Conversely, the kidney and liver, which have denser cellular structures, appeared more resistant to early degradation, although significant structural deterioration was also observed by the third week. These findings align with²⁰, who emphasized that the optimal fixation duration for soft tissues ranges between 12 and 24 hours, depending on organ size and type. Fixation exceeding this duration promotes excessive protein cross-linking, impairs dye penetration, and results in non-representative histological morphology.

Based on this study, fixation for three weeks did not preserve tissue quality optimally. The observed microscopic structural damage indicates that this duration is excessive and unsuitable for use as a reference in developing histotechnology SOPs for animal house and histology laboratories. Therefore, further research is required to compare shorter fixation periods (e.g., 12, 24, and 48 hours) to determine the ideal fixation time for each organ type. Moreover, SOP validation should also consider other technical parameters such as fixative-to-tissue ratio, tissue thickness, and

environmental conditions (temperature and pH). Optimization of these factors is expected to produce representative histological preparations with uniform staining and well-preserved tissue architecture.

CONCLUSION

This study demonstrated that three weeks of fixation in 10% formalin resulted in significant macroscopic and microscopic deterioration of kidney, liver, and pancreatic tissues in Sprague Dawley rats, including increased tissue hardness, loss of cellular integrity, and signs of autolysis. These findings indicate that prolonged fixation leads to over-fixation and compromises histological quality. Therefore, a three-week fixation period is not suitable as a reference for histotechnology SOP development, and shorter fixation durations, particularly within the 12–48 h range, are recommended for further investigation to determine optimal histological preservation.

Competing Interests

The authors declare that they have no financial or non-financial conflicts of interest that could have influenced the content or outcomes of this article. They are solely responsible for the accuracy, integrity, and presentation of the data and interpretations provided, and no funding or external affiliations affected the research.

Authors' contributions

All authors contributed equally to the conceptualization, literature review, data acquisition and analysis, manuscript drafting, and critical revisions. All authors have reviewed, approved the final manuscript, and agreed to be accountable for all aspects of the work, ensuring its accuracy and integrity.

REFERENCES

1. Dağdeviren T, Yolcu HK, Ünver B. Histological Fixation Process and Fixatives. *Turkish J Agric - Food Sci Technol.* 2024;12(8):1482-1486. doi:10.24925/turjaf.v12i8.1482-1486.6808
2. Howat WJ, Wilson BA. Tissue fixation and the effect of molecular fixatives on downstream staining procedures. *Methods.* 2014;70(1):12-19. doi:10.1016/jymeth.2014.01.022
3. Mezei T, Kolcsár M, Joó A, Gurzu S. Image Analysis in Histopathology and Cytopathology: From Early Days to Current Perspectives. *J Imaging.* 2024;10(10):252. doi:10.3390/jimaging10100252
4. Grizzle W. Special symposium: fixation and tissue processing models. *Biotech Histochem.* 2009;84(5):185-193. doi:10.3109/10520290903039052
5. Singh H, Bishen KA, Garg D, Sukhija H, Sharma D, Tomar U. Fixation and Fixatives: Roles and Functions A Short Review. *Dent J Adv Stud.* 2019;07(02):051-055. doi:10.1055/s-0039-1693098
6. Bhat AH, Hussein S. Fixation and different types of fixatives: Their role and functions: A review. *Int J Clin Diagnostic Pathol.* 2021;4(4):113-119. doi:10.33545/pathol.2021.v4.i4b.433

7. Szunyogova E, Parson SH. Histological and Histochemical Methods, Theory and Practice, 5 th Ed. *J Anat.* 2016;228(5):887-887. doi:10.1111/joa.12390
8. Eberechukwu GC, Ike AO, Okwusike GC, Pepple IA. The Effect of Rapid Tissue Processing on Fixation Time Using Microwave Techniques. *J Appl Heal Sci Med.* Published online January 28, 2023:10-20. doi:10.58614/jahsm312
9. Kim S Suvarna, Christopher Layton JDB. *No Title.*; 2018.
10. Paramasivan S, Padhye V, Loft C, et al. Evaluation of the temporal relationship between formalin submersion time and routine tissue processing on resected head and neck specimen size. *Aust J Otolaryngol.* 2021;4:0-0. doi:10.21037/ajo-20-46
11. Shetty JK, Babu HF, Hosapatna Laxminarayana KP. Histomorphological Assessment of Formalin versus Nonformalin Fixatives in Diagnostic Surgical Pathology. *J Lab Physicians.* 2020;12(04):271-275. doi:10.1055/s-0040-1722546
12. Francis RJ, Ferguson D, Kempster S, Hall J, Berry N, MacLellan-Gibson K. Blood identified and quantified in formalin fixed paraffin embedded lung sections using eosin fluorescence. *Histochem Cell Biol.* 2022;158(4):383-388. doi:10.1007/s00418-022-02130-z
13. Bussolati G. Fixation in histopathology: the mandate to renew. *Pathologica.* 2022;114(4):275-277. doi:10.32074/1591-951X-782
14. Willner M, Fior G, Marschner M, et al. Phase-Contrast Hounsfield Units of Fixated and Non-Fixated Soft-Tissue Samples. Rozhkova EA, ed. *PLoS One.* 2015;10(8):e0137016. doi:10.1371/journal.pone.0137016
15. Dicke SS, Alperstein AM, Schueler KL, et al. Application of 2D IR Bioimaging: Hyperspectral Images of Formalin-Fixed Pancreatic Tissues and Observation of Slow Protein Degradation. *J Phys Chem B.* 2021;125(33):9517-9525. doi:10.1021/acs.jpcb.1c05554
16. Chung JY, Song JS, Ylaya K, et al. Histomorphological and Molecular Assessments of the Fixation Times Comparing Formalin and Ethanol-Based Fixatives. *J Histochem Cytochem.* 2018;66(2):121-135. doi:10.1369/0022155417741467
17. Ravi PK, Purkait S, Singh SR, Mishra PR. Decay score: a guide to the immunoreactivity of human pancreatic islets in autopsy specimen. *Folia Morphol (Warsz).* 2022;81(1):101-106. doi:10.5603/FM.a2021.0002
18. Wolk DM, Kaleta EJ, Wysocki VH. PCR–Electrospray Ionization Mass Spectrometry. *J Mol Diagnostics.* 2012;14(4):295-304. doi:10.1016/j.jmoldx.2012.02.005
19. Alkali, I., Colombo, M., Rodak, O., Nizanski, W., & Luvoni, G. C. (2024). Effect of tissue fixation duration on morphology and immunoreactivity of feline ovarian tissue. *Research in Veterinary Science*, 171, 105371. <https://doi.org/10.1016/j.rvsc.2024.105371>
20. Carson, F. L., & Hladik, C. (2020). Histotechnology: A self-instructional text (5th ed.). ASCP Press.