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ABSTRACT 
 

Background: The skin excisional wound healing process involves an intricate-
regulated series of cellular responses to reverse the formation of skin tissue integrity. 
This process requires paracrine communication involving anti-inflammatory cytokines 

and growth factors, especially interleukin 10 (IL-10) and TGF-β1. On the other hand, 
hypoxic preconditioned mesenchymal stem cells (Hypoxia-MSCs) have been 

acknowledged to enrich IL-10 and TGF-β1 secretion contributing to accelerated wound 
healing compared to normal preconditioned mesenchymal stem cells (Normoxia-

MSCs).  

Objective: This study aimed to compare Hypoxia-MSCs and Normoxia-MSCs in 
integrating the serial expression of IL-10 and TGF-β1 associated with improved 

collagen density in animal models of excision wounds.  

Methods: Thirty-six male Wistar rats with excision wounds were made as animal 
models using the 6 mm biopsy method. The rats were randomly divided into four groups 

consisting of four treatment groups: N-MSCs 1x106, H-MSCs 1x106, Control (PBS 
treatment), and Sham (untreated or healthy mice). The treatments were administered 2 
times intraperitoneally on day 0. Skin tissue was collected on days 3, 6, and 9 post-

injections. IL-10 dan TGF-β1 expressions were examined by qPCR.  

Results: This study showed that there was a significant increase in IL-10 and TGF-β1 
after Hypoxia-MSCs and Normoxia-MSCs treatment compared to the Control group. 

Conclusion: Hypoxia-MSCs can improve the serial expression of IL-10 which leads to 
wound repair of the mouse model of excision wound. These results suggest that a 

hypoxic environment can enhance the therapeutic effect of MSCs. 
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INTRODUCTION 

 

Full-thickness wound healing is a complex process requiring a well-orchestrated mechanism 
involving the interaction of various cell types particularly inflammatory cells and fibroblasts with the 
cytokines, growth factors, and extracellular matrix components1. The potential anti-inflammatory 

cytokine, IL-10 acts as an important regulator in accelerating the wound healing process by promoting 
the inflammatory phase shift to the proliferation phase to initiate the regeneration process. Several 
studies reported that TGF-β is also acts as an anti-inflammatory cytokine which is being responsible of 
the optimal wound healing by regulating the fibroblasts activation  and differentiation associated with 

extracellular matrix (ECM) production in the injured tissue2,3. On the other hand, recent studies have 
reported that mesenchymal stem cells (MSCs) increase their potency to release the robust cytokines, 
CHEM 
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chemokines, and other molecules, including IL-10 and TGF-β1, into their medium under hypoxic 

culture conditions known as hypoxia MSCs 4,5. Furthermore, MSCs have been shown can enhance 
wound healing in several wounds through the paracrine mechanism6. However, the role of  MSCs in 
regulating IL-10 and TGF-β1 in wound healing remains unclear. Therefore, in this study, we 
investigated the role played by MSCs in controlling IL-10 and TGF-β1 levels regarding the full-

thickness wound acceleration. 

Hypoxia MSCs are mesenchymal stem cells under hypoxic culture conditions involved in cell 

proliferation, differentiation, migration, apoptosis, and angiogenesis 5,7,8.  MSCs are multipotent stromal 
cells indicated by plastic adherent and fibroblast-like characteristics and can differentiate into a variety 
of cell types, including osteoblasts, chondrocytes, adipocytes, and neuron cells 9,10. MSCs are also 
characterized by the expression of cell surface markers including CD73, CD90, CD105, and lack of the 

expression of CD45, CD34, CD14 or CD11b, CD79a, or CD19 and Human Leucocyte Antigen HLA 
class II 11,12. MSCs secrete a broad range of bioactive molecules, including cytokines, chemokines, and 
growth factors, collectively known as MSC-CM, in response to regulating multiple biological processes, 
including tissue regeneration 13. Several studies have reported that MSC-CM has significant positive 

effects in the treatment of inflammatory disorders through paracrine signaling of MSC-secreted 
cytokines, particularly IL-10 and TGF-β14,15. Furthermore, IL-10 and TGF-β1 serve as potent anti-
inflammatory cytokines in accelerating wound healing by controlling excessive inflammatory 
responses. Specifically, IL-10 accelerates the inflammatory phase shift to the proliferation phase by 

reducing the pro-inflammatory cytokines such as IFN-γ, IL-2, and TNF-α, while TGF-β1 accelerates 
the healing process by promoting fibroblast activation to produce ECM associated with optimum wound 
closure16,17.  

Recent studies also showed that Mesenchymal Stem Cell-Conditioned Medium (MSC-CM) 
contains various molecules mainly IL-10 which can induce regenerative tissue repairing by regulating 
an inflammatory pathway to promote dermal wound closure 14,18. Previous studies also revealed that 

MSCs secreted IL-10 and TGF-β1 may accelerate cutaneous wound closure by controlling the 
inflammation process and stimulating fibroblast activation 19,20. IL-10 acts as a major suppressor of the 
inflammatory response in accelerating the shift from inflammatory to proliferation phase by down-
regulating the expression of the pro-inflammatory cytokines 21,22. IL-10 also has been reported might 

induce macrophage polarization from the pro-inflammatory M1 phenotype into an anti-inflammatory 
M2 phenotype, particularly associated with an increase of TGF-β1 expression triggering the fibroblast 
activation associated with the wound healing acceleration without scarring 23,24. Ultimately, these 
statements provide direct evidence that IL-10 and TGF-β are potential therapeutic targets in resolving 

full-thickness wounds. Therefore, controlling the IL-10 and TGF-β1 levels at the appropriate time using 
MSCs to accelerate the full-thickness wound healing is needed. This study aims to observe the role of 
MSCs in controlling TGF-β1 and IL-10 serial expression to accelerate the full-thickness skin excisions 
healing. 

 
METHODS 

 

MSC isolation and characterization  

The procedure in this study has been approved by the Ethical Committee of Medical Faculty 
Sultan Agung Islamic University Semarang. The MSCs were isolated as previously described 25. 

Briefly, the umbilical cord from a healthy Wistar rat at 19-21 days gestational period was chopped under 
sterile conditions, and placed on a plastic flask culture. The explants were immersed in a growth medium 
(GM) containing Dulbecco’s Modified Eagles Medium/DMEM (Gibco, 11885084, NY, USA) with 
10%  fetal bovine serum/FBS (Gibco, 10270106, South American) and 100 IU/mL penicillin-
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streptomycin (Sigma-Aldrich) and incubated at 37 °C temperature and 5% O2. The GM was replaced 

twice weekly until the cell reaches 90% confluence.  

The MSC surface markers were determined with the method that was previously described26. In 

summary, the cells in the 4th passage were detached and stained with anti-rat monoclonal antibodies 
including APC-conjugated CD73, FITC-conjugated CD90, PerCP-conjugated CD105, and PE-
conjugated hemopoietic stem cell lineage Lin for 30 min at 4°C. The labeled cells were analyzed using 
flow cytometry BD Accuri C6 PLUS (BD Biosciences, San Jose, CA, USA). The MSC's differentiation 

capacity was determined using an osteogenic differentiation assay by Alizarin red staining. Alizarin red 
is a commonly used stain to identify calcium-containing osteocytes in the differentiated cultures of both 
human and rodent mesenchymal stem cells. Briefly, the cells were plated on 4×10 4 cells in 3.5 cm 
culture dishes under an osteogenic medium composed of DMEM High Glucose supplemented with 10% 

FBS, 1% Pen-strep, 1 x 10-2 M sodium β-glycerophosphate, 1 x 10-4 M dexamethasone, and 5 x 10-5 M 
ascorbic acid. The medium was replaced every 3 days for 15 days. We then evaluated the calcium 
deposition by Alizarin Red staining (Sigma Aldrich, USA). Calcium forms an Alizarin Red S-calcium 
complex in a chelation process, and the end product is a bright red stain. 

Induction of Hypoxia-MSCs and Normoxia-MSCs 

To induce Hypoxia-MSCs, MSCs from the 4th passage were incubated under 5% O2 in a hypoxic 
chamber (STEMCELL Technologies; Biopolis; Singapore) for 24 h at 37°C and 5% O2. Meanwhile, 
the Normoxia-MSCs group was incubated under normal O2 conditions (20%). 

Excision Wound Model 

A total of 36 male Wistar rats (200-250 grams) were treated under conditions of temperature 
23 ±2 °C, relative humidity 60%, with a light-dark cycle of 12:12 hours. The animal model of the 

excision wound was made by the biopsy method. The rats were anesthetized first with isofluorane, then 
the back was shaved and a 6 mm circular biopsy was performed. Rats were randomly divided into four 
groups; Treatment P1 (n=9) excision wounds treated with Normoxia-MSCs topically, and Treatment 
P2 (n=9) excision wounds treated with Hypoxia-MSCs topically, while the control group (n =9) excision 

wounds treated with phosphate-buffered saline (PBS) and a combination of 10% placental extract and 
neomycin sulfate 0.5% (Bioplacenton®) and the Sham group (n=9) the untreated group. The 
intervention Normoxia-MSCs, Hypoxia-MSCs, and PBS were administered intraperitoneally twice on 
day 0. On days 3, 6, and 9 terminations were carried out to obtain skin tissue samples.  

IL-10 and TGF-β1 Expression Analysis by qPCR 

Total RNA from 50 mg of skin tissue from each treatment extracted was extracted with Trizol 
(Invitrogen, Shanghai, China) according to the recommended protocol. Furthermore, cDNA was 
synthesized using the Enhanced Avian RT First-Strand Synthesis kit (Sigma - Aldrich). KAPA-SYBR® 

FAST qPCR Master Mix (2X) Kit used for reverse transcription in the Illumina® Eco Real-Time PCR 
instrument. The mRNA expression of beta-actin and IL-10 was measured using the respective primers 
(Table 1). The thermocycler conditions were as follows: initiation phase at 95 °C (10 min), followed by 
95 °C (15 s), and 60 °C (1 min) in 45 cycles). The expression level was recorded as Cycles threshold 

(Ct) and analyzed using the 2−ΔΔ Ct method. 

Statistical analysis 

Statistical analysis was performed using SPSS 22 (SPSS Inc.; Chicago; USA). The results of 

the descriptive analysis were expressed in terms of mean ± standard deviation. For analysis between 
groups, analysis of variance (ANOVA) was used to analyze significant differences between groups 
with a significance value of p<0.05. 
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RESULTS 

Characteristics and differentiation capability of MSCs 

MSCs isolated from the umbilical cord were analyzed based on their plastic adherent capability 
under standard culture conditions, antigen-specific surface markers, and differentiation capability after 

5 passages. In this study, the cell morphology of MSCs at the fourth passage exhibited typical 
monolayers of spindle-shaped fibroblast-like cells, with adhering capability to the plastic flask (Figure. 
1A). The ability of MSCs to differentiate into osteogenic and adipose cells was analyzed by culturing 
the MSCs under osteogenic and adipogenic differentiation medium for 21 and 30 days, respectively. 

After incubation, the calcium and adipose deposition were visualized as red color after alizarin red and 
oil red o solution administration, respectively (Figure. 1B and 1C) On the other hand, to characterize 
MSCs surface antigens, we performed flow cytometry analysis as indicated by the International Society 
for Cellular Therapy (ISCT). We found a high level of CD90.1 (99.4±0.32%) and CD29 (96.9±0.87 %) 

and lacked the expression of CD31 (3.73±1.62 %) and CD45 (1.90±0.38 %; Figure. 1D). 

Hypoxia MSCs regulate IL-10 expression in skin excision rats 

As an important anti-inflammatory cytokine, IL-10 might shift inflammation to the proliferation 
phase by deactivating monocytes and macrophages. To determine the role of Hypoxia -MSCs and 

Normoxia-MSCs in skin excision wound healing, the expression of IL-10 was measured using qPCR. 
The expression of IL-10 in H-MSCs groups and N-MSCs group were significantly increased from day 
3 to day (H-MSCs: D3 2,58±0,05; D6 3,60±0,29 and N-MSCs: D3 2,43±0,12; D6 2,69±0,09) compared 
with Control group (D3 2,22±0,17; D6 4,03±0,16). On day 9, the suppression capability of H-MSCs 

(1,54±0,27) was more significant than N-MSCs (3,30±0,17). In addition, the level of IL-10 expression 
in the Control group (4,06±0,09) was high due to the inflammation process continued (Figure. 2A.). 
 

Hypoxia MSCs regulate TGF-β1 expression in skin excision rats 

The relative expression of TGF-β1 in H-MSCs groups and N-MSCs group were significantly 
increased from day 3 to day (H-MSCs: D3 0,38±0,05; D6 2,34±0,5 and N-MSCs: D3 0,54±0,07; D6 
1,47±0,2) compared with Control group (D3 0,39±0,06; D6 1,49±0,09). At day 9, the suppression 
capability of H-MSCs (1,06±0,2) was more significant than N-MSCs (1,43±0,6). In addition, the level 

of TGF-β1 expression in the Control group (1,98±0,37) was high due to inflammation still continued 
(Figure. 2B) 
 
DISCUSSION 

The important aspect in the healing processes of skin excision wounds is the activation and 
differentiation of dermal fibroblasts in proliferating and migrating to the wound site which is associated 

with the production of ECM to accelerate wound closure24–26. This process is controlled by several anti-
inflammatory cytokines, mainly TGF-β1 and IL-1027–29. Previous studies have reported that IL-10 and 
TGF-β1 are important molecules in accelerating wound healing by activating fibroblasts into 
myofibroblasts and increasing the production of extracellular matrix leading to wound closure without 

scarring27,28,30. In addition, several studies have also confirmed that under hypoxic culture conditions, 
MSCs can increase the secretion of cytokines, including IL-10 and TGF-β31–34. However, the role of 
Hypoxia-MSCs in accelerating excisional wound healing, especially concerning the regulation of IL-
10 serial expression, has not been investigated. Therefore, studying the role of Hypoxia-MSCs and 

Normoxia-MSCs to regulate IL-10 and TGF-β1 expression in the excision wound healing processes at 
the right time is needed. 
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Increased levels of IL-10 and TGF-β1 after administration of H-MSCs in the early healing phase 

on days 3 to 6 followed by a linear decrease in IL-10 levels on day 9 reflecting the late healing phase 
may indicate that Hypoxia-MSCs can accelerate the healing processes by regulating IL-10 expression. 
Hypoxia MSCs that released IL-10 could increase the transfer of the healing phase from the 
inflammatory phase to the proliferative phase compared to the Normoxia-MSCs and control groups. A 

previous research report showed that IL-10 facilitates the transition from inflammation to the 
proliferative phase by inhibiting the secretion of pro-inflammatory cytokines such as TNF-α during the 
inflammatory phase leading to the accelerated phase shift of wound healing35–37. In addition, IL-10 also 

 
Figure 2. Descriptive graph of the relative expression of IL-10 mRNA (A) and TGF-β1 (B) compared to β-actin. Data are 

presented as mean ± SD of the 3 samples. *p<0.05 compared with Control group. Note: Normoxia -MSCs (excision wound treated 

with Normoxia-MSCs), Hypoxia-MSCs (excision wound treated with Hypoxia-MSCs), while the control group (n=9) excision 

wound was treated with phosphate-buffered saline (PBS) and the Sham group. (n=9) the untreated group.  

 

Figure 1. UC-MSCs candidates from the in vitro culture showed spindle forms such as fibroblast-like cells (100x magnification) (A). 

UC-MSCs were treated using an osteogenic and adipogenic differentiation medium to assess the capacity of MSCs to differentiate 

into the bone matrix and adipose, respectively. The calcium deposition appeared in red color after alizarin red staining (B); and the 

adipose deposition also appeared in red color after oil red o staining (C). Flow cytometry characterization of MSCs expressed CD90.1, 

CD29 and lacked the expression of CD31 and CD45 (D). 
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functions as an antifibrotic cytokine in regulating extracellular matrix remodeling activity by controlling 

fibroblast activation. Other studies have also revealed that high levels of IL-10 can facilitate de-
differentiation of myofibroblasts back into fibroblasts without apoptosis leading to scarless wound 
closure38. The report is in line with the results of this study that IL-10 secreted by H-MSCs can 
accelerate regenerative wound healing through a paracrine mechanism by IL-10. On the other hand, the 

expression of IL-10 in the control group was high because the inflammatory process had not been 
controlled. 

This study resulted that the TGF-β1 level of skin excision rat models were decrease on day 9 
after MSCs administration. Several studies have widely demonstrated that the potential of MSCs to 
regenerate tissue injury including skin wounds was by inducing dermal cells proliferation, in addition 
to reducing the activation of dermal fibroblast.7,22,39,40 The activation and differentiation of dermal 

fibroblast into myofibroblast are induced by main molecular agents, particularly the TGF-β1 family41,42 
TGF-β1 is the most potent profibrotic mediators released and activated after tissue injury, thus 
controlling of its expression in the remodeling phase is critical to prevent scarring.35,38,42 In this study, 
the decrease of TGF-β1 levels occurring in skin wounds might regulate by MSCs administration by 

releasing anti-inflammatory cytokines, primarily IL-10. As a potent anti-inflammatory cytokine, IL-10 
could prevent scar progression by competitively binding to TGF-β1 receptors resulting in the lowering 
of TGF-β1 expression43. Nowadays, MSCs can suppress TGF-β levels released by M2 macrophages 
through releasing IL-10. We suggested that the decrease of TGF-β1 invented by IL-10 was emerged 

through the binding of IL-10 to macrophage receptor that activates Janus tyrosine kinase 1 (JAK1) and 
tyrosine kinase-2, leading to signal transduction and activation of transcription 3 (STAT3) then 
transmigrate to the nucleus and bind to the target gene promotor leading to suppress the expression of 
TGF-β1. In addition, the increase of TGF-β1 levels in the control group might cause the lack of IL-10-

released-by MSCs to suppress the TGF-β1 levels, consequently, the TGF-β1 level increased because 
the inflammation had not been controlled.  

A limitation of this study is that we did not measure α-SMA as a parameter of fibroblast 
activation associated with accelerated wound closure. We also did not analyze collagen accumulation 
as an indicator of optimal tissue repair and regeneration. Therefore, understanding the role of Hypoxic 
MSCs in controlling α-SMA associated with collagen production in accelerating excisional wound 

closure remains to be explored further. 

CONCLUSION 

In conclusion, administration of Hypoxia-MSCs in animal models of excision wounds was able 
to improve the serial facial expression of IL-10 and TGF-β1 compared to Normoxia-MSCs, which led 

to the acceleration of the wound healing process. These results suggest that a hypoxic environment can 
enhance the therapeutic effect of MSCs. 
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