Secretome MSCs restore α-Smooth Muscle Actin Protein Tissue Expression in Croton Oil-Induced Hemorrhoid Rats
Abstract
Background: Hemorrhoidal disease, a prevalent and distressing condition affecting a significant number of the population, presents a considerable challenge in both clinical management and patient quality of life. Secretome mesenchymal stem cell hypoxia (S-HMSCs) is involved in accelerated remodeling and regeneration of wound tissue, including hemorrhoids, through anti-inflammatory and anti-fibrotic molecules paracrine activities. Objective: This study aims to investigate the effect of Secretome Hypoxia MSCs (S-HMSCs) in restoring α-smooth muscle actin (α-SMA) expression in croton oil-induced hemorrhoid rats. Material and Methods: An experimental study with a post-test-only control group design was used in this study. Croton oil was administrated for inducting hemorrhoidal disease. A total of 24 male Wistar rats were divided into four groups (n=6); Sham (Healthy group); Untreated (Croton oil+NaCl 300 µL) Croton oil+S-HMSCs 150); Secretome 150 µL (Croton oil+S-HM SCs 150 µL) and Secretome 300 µL (Croton oil+S-HMSCs 300 µL). S-HMSCs were injected intraperitoneally every week for up to 4 weeks. All animals were scarified and the rectal tissue was collected for α-SMA immunohistochemical staining analysis. Results: After hemorrhoid induction, α-SMA was expressed 20% higher than Sham group, furthermore, administration of 150 µL and 300 µL of S-HMSCs may decreased by 15% and 20% α-SMA expression compared to the Untreated group, expression in croton oil-induced hemorrhoid rats.
References
Consistently A V. Hypoxic Preconditioning of Mesenchymal Stromal Cells Induces Metabolic Changes , Enhances Survival , and Promotes Cell Retention In Vivo.
Putra RA, Suroto H. Evaluation of Secretome Tenogenic Potential from Adipose Stem Cells (ACS) in Hypoxic Condition with Fresh Frozen Tendon Scaffold Using Scleraxis (Scx), Insulin-Like Growth Factor 1 (IGF-1) and Collagen Type 1. J Biomimetics, Biomater Biomed Eng. 2021;49:111-118. doi:10.4028/WWW.SCIENTIFIC.NET/JBBBE.49.111
Tsuji K, Kitamura S, Wada J. Secretomes from mesenchymal stem cells against acute kidney injury: Possible heterogeneity. Stem Cells Int. 2018;2018. doi:10.1155/2018/8693137
Brennan MÁ, Layrolle P, Mooney DJ. Biomaterials Functionalized with MSC Secreted Extracellular Vesicles and Soluble Factors for Tissue Regeneration. Adv Funct Mater. 2020;30(37):1909125. doi:10.1002/ADFM.201909125
Liu L, Gao J, Yuan Y, Chang Q, Liao Y, Lu F. Hypoxia preconditioned human adipose derived mesenchymal stem cells enhance angiogenic potential via secretion of increased VEGF and bFGF. Cell Biol Int. 2013;37(6):551-560. doi:10.1002/CBIN.10097
Karimi M, Maghsoud Z, Halabian R. Effect of Preconditioned Mesenchymal Stem Cells with Nisin Prebiotic on the Expression of Wound Healing Factors Such as TGF-β1, FGF-2, IL-1, IL-6, and IL-10. Regen Eng Transl Med. 2021;7(1):30-40. doi:10.1007/S40883-021-00194-2/FIGURES/6
Zhou Y, Yamamoto Y, Xiao Z, Ochiya T. The Immunomodulatory Functions of Mesenchymal Stromal/Stem Cells Mediated via Paracrine Activity. J Clin Med 2019, Vol 8, Page 1025. 2019;8(7):1025. doi:10.3390/JCM8071025
Tsuji K, Kitamura S, Wada J. Immunomodulatory and regenerative effects of mesenchymal stem cell-derived extracellular vesicles in renal diseases. Int J Mol Sci. 2020;21(3). doi:10.3390/ijms21030756
Aibuedefe B, Kling SM, Philp MM, Ross HM, Poggio JL. An update on surgical treatment of hemorrhoidal disease: a systematic review and meta-analysis. Int J Colorectal Dis. 2021;36(9):2041-2049. doi:10.1007/S00384-021-03953-3/METRICS
Sabry D, Mohamed A, Monir M, Ibrahim HA. The effect of mesenchymal stem cells derived microvesicles on the treatment of experimental CCL4 induced liver fibrosis in rats. Int J Stem Cells. 2019;12(3):400-409. doi:10.15283/IJSC18143
Bhaskar V, Konala R, Bhonde R, Pal R. Secretome studies of mesenchymal stromal cells (MSCs) isolated from three tissue sources reveal subtle differences in potency. doi:10.1007/s11626-020-00501-1/Published
Zelová H, Hošek J. TNF-α signalling and inflammation: interactions between old acquaintances. Inflamm Res. 2013;62(7):641-651. doi:10.1007/S00011-013-0633-0
Mao D, Mi J, Pan X, Li F, Rui Y. Suppression of TGF-beta activity with remobilization attenuates immobilization-induced joint contracture in rats. Injury. 2021;52:434-442. doi:10.1016/j.injury.2020.12.029
Hermansyah D, Putra A, Munir D, Lelo A, Amalina ND, Alif I. Synergistic Effect of Curcuma longa Extract in Combination with Phyllanthus niruri Extract in Regulating Annexin A2, Epidermal Growth Factor Receptor, Matrix Metalloproteinases, and Pyruvate Kinase M1/2 Signaling Pathway on Breast Cancer Stem Cell. Open Access Maced J Med Sci. 2021;9(A):271-285. doi:10.3889/oamjms.2021.5941
Johnston EF, Gillis TE. Transforming growth factor beta-1 (TGF-β1) stimulates collagen synthesis in cultured rainbow trout cardiac fibroblasts. J Exp Biol. 2017;220(14):2645-2653. doi:10.1242/jeb.160093
Kucharzewski M, Rojczyk E, Wilemska-Kucharzewska K, Wilk R, Hudecki J, Los MJ. Novel trends in application of stem cells in skin wound healing. Eur J Pharmacol. 2019;843:307-315. doi:10.1016/j.ejphar.2018.12.012
Sapudom J, Wu X, Chkolnikov M, Ansorge M, Anderegg U, Pompe T. Fibroblast fate regulation by time dependent TGF-β1 and IL-10 stimulation in biomimetic 3D matrices. Biomater Sci. 2017;5(9):1858-1867. doi:10.1039/c7bm00286f
Huang YH, Chen MH, Guo QL, Chen ZX, Chen QD, Wang XZ. Interleukin-10 induces senescence of activated hepatic stellate cells via STAT3-p53 pathway to attenuate liver fibrosis. Cell Signal. 2020;66(October 2019):109445. doi:10.1016/j.cellsig.2019.109445
Meng XM, Nikolic-Paterson DJ, Lan HY. TGF-β: The master regulator of fibrosis. Nat Rev Nephrol. 2016;12:325-338. doi:10.1038/nrneph.2016.48
Hao JS, Shan G, Cai SW. Protection against TGF- b 1-induced fibrosis effects of IL-10 on dermal fibroblasts and its potential therapeutics for the reduction of skin scarring. Published online 2013:341-352. doi:10.1007/s00403-013-1314-0
Fathy M, Okabe M, Eldien HMS, Yoshida T. AT-MSCs antifibrotic activity is improved by Eugenol through modulation of TGF-β/Smad signaling pathway in rats. Molecules. 2020;25(2):1-17. doi:10.3390/molecules25020348
Ishiuchi N, Nakashima A, Doi S, et al. Hypoxia-preconditioned mesenchymal stem cells prevent renal fibrosis and inflammation in ischemia-reperfusion rats. Stem Cell Res Ther. 2020;11(1):1-15. doi:10.1186/s13287-020-01642-6
Steen EH, Wang X, Balaji S, Butte MJ, Bollyky PL, Keswani SG. The Role of the Anti-Inflammatory Cytokine Interleukin-10 in Tissue Fibrosis. Adv Wound Care. 2020;9(4):184-198. doi:10.1089/wound.2019.1032
Yustianingsih V, Sumarawati T, Putra A. Hypoxia enhances self-renewal properties and markers of mesenchymal stem cells. 2019;38(3):164-171. doi:10.18051/UnivMed.2019.v38.164-171
Al-Azzawi B, McGuigan DH, Koivula FNM, et al. The Secretome of Mesenchymal Stem Cells Prevents Islet Beta Cell Apoptosis via an IL-10-Dependent Mechanism. Open Stem Cell J. 2020;6(1):1-12. doi:10.2174/1876893802006010001
Eleuteri S, Fierabracci A. Insights into the Secretome of Mesenchymal Stem Cells and Its Potential Applications. Int J Mol Sci 2019, Vol 20, Page 4597. 2019;20(18):4597. doi:10.3390/IJMS20184597
Anna N, Sa’dyah C, Putra A, et al. Suppression of transforming growth factor-β by mesenchymal stem-cells accelerates liver regeneration in liver fibrosis animal model. Universa Med. 2021;40(1):29-35. doi:10.18051/UNIVMED.2021.V40.29-35
Putra A, Alif I, Hamra N, et al. MSC-released TGF-β regulate α-SMA expression of myofibroblast during wound healing. J Stem Cells Regen Med. 2020;16(2):73. doi:10.46582/JSRM.1602011
Putra A, Widyatmoko A, Ibrahim S, et al. Case series of the first three severe COVID-19 patients treated with the secretome of hypoxia-mesenchymal stem cells in Indonesia. F1000Research 2021 10228. 2021;10:228. doi:10.12688/f1000research.51191.3
Azeemuddin M, Lakshminarayanashastry Viswanatha G, Rafiq M, et al. An Improved Experimental Model of Hemorrhoids in Rats: Evaluation of Antihemorrhoidal Activity of an Herbal Formulation. Published online 2014. doi:10.1155/2014/530931
Margetis N. Pathophysiology of internal hemorrhoids. Ann Gastroenterol. 2019;32(3):264-272. doi:10.20524/aog.2019.0355
Mihai DP, Seremet OC, Nitulescu G, et al. Evaluation of Natural Extracts in Animal Models of Pain and Inflammation for a Potential Therapy of Hemorrhoidal Disease. Sci Pharm 2019, Vol 87, Page 14. 2019;87(2):14. doi:10.3390/SCIPHARM87020014
Sheikh P, Régnier C, Goron F, Salmat G. The prevalence, characteristics and treatment of hemorrhoidal disease: Results of an international web-based survey. J Comp Eff Res. 2020;9(17):1219-1232. doi:10.2217/CER-2020-0159/ASSET/990E1171-4DA2-4225-917F-00CE3B96F1EE/ASSETS/IMAGES/MEDIUM/CER-2020-0159INFOGRAPHIC.GIF