Comparison of Two Tangential Flow Filtration Methods in Isolating CD63+/CD9+ Mesenchymal Stem Cell Exosome

  • Agung Putra Stem Cell and Cancer Research (SCCR), Indonesia
  • Iffan Alif Stem Cell and Cancer Research (SCCR), Faculty of Medicine, Sultan Agung Islamic University (UNISSULA), Semarang, Indonesia
  • Ardi Prasetio Stem Cell and Cancer Research (SCCR) Laboratory, Semarang, Indonesia
  • Salindri Prawitasari Stem Cell and Cancer Research (SCCR) Laboratory, Semarang, Indonesia
Keywords: EXOSOME, CD63, CD9, TFF

Abstract

Background: Extracellular vesicles, particularly CD63+/CD9+ Mesenchymal Stem Cell Exosome (MSC-Exo), have emerged as crucial mediators of intercellular communication and potential therapeutic agents, including regenerative medicine and immunomodulation. However, the precise isolation and purification of MSC exosomes pose critical challenges. Tangential Flow Filtration (TFF) has gained recognition as an efficient exosome isolation method, offering scalability and versatility. In this study, we address the pressing need for standardized exosome isolation methods by comparing two distinct TFF-based protocols for isolating CD63+/CD9+ MSC exosomes based on filter size pore order. Methods: MSC-Exo were conducted from the Stem Cell and Cancer Research Laboratory (SCCR Indonesia), which were then processed through TFF using different filter sizes and orders. There are two filtration methods compared, first, MSC-Exo was filtered with 1000-5-500-300-100-50-10-5 filter order. Second procedure, MSC-Exo was filtered using 1000-500-300-100-50-10-5 filter order. Result: Flow cytometry analysis revealed variations in the percentage of CD63+/CD9+ in the MSC-Exo based on filter order. The results indicate that the choice of filter order significantly influences the size range with the highest concentration of CD63+/CD9+ MSC-Exo. Conclusion: This research underscores the importance of optimizing TFF-based isolation methods for CD63+/CD9+ MSC exosomes, especially in the order of filter pore size.

References

Harisma R, Taofik D, Wathoni RN. Mesenchymal Stem Cell Secretome for Dermatology Application: A Review. Published online 2021. doi:10.2147/CCID.S331044

Birtwistle L, Chen XM, Pollock C. Mesenchymal stem cell-derived extracellular vesicles to the rescue of renal injury. Int J Mol Sci. 2021;22(12). doi:10.3390/ijms22126596

Dehghani M, Lucas K, Flax J, McGrath J, Gaborski T. Tangential Flow Microfluidics for the Capture and Release of Nanoparticles and Extracellular Vesicles on Conventional and Ultrathin Membranes. Adv Mater Technol. Published online 2019. doi:10.1002/admt.201900539

Jia Z, Lv Y, Zhang W, et al. Mesenchymal stem cell derived exosomes-based immunological signature in a rat model of corneal allograft rejection therapy. Front Biosci - Landmark. 2022;27(3):86. doi:10.31083/J.FBL2703086/2768-6698-27-3-086/FIG8.JPG

Toh WS, Lai RC, Zhang B, Lim SK. MSC exosome works through a protein-based mechanism of action. Biochem Soc Trans. 2018;46(4):843-853. doi:10.1042/BST20180079

Kim JY, Rhim WK, Yoo YI, et al. Defined MSC exosome with high yield and purity to improve regenerative activity. J Tissue Eng. 2021;12. doi:10.1177/20417314211008626/ASSET/IMAGES/LARGE/10.1177_20417314211008626-FIG7.JPEG

Pires IS, Palmer AF. Selective protein purification via tangential flow filtration – Exploiting protein-protein complexes to enable size-based separations. J Memb Sci. Published online 2021. doi:10.1016/j.memsci.2020.118712

Cho BS, Lee J, Won Y, et al. Skin Brightening Efficacy of Exosomes Derived from Human Adipose Tissue-Derived Stem/Stromal Cells: A Prospective, Split-Face, Randomized Placebo-Controlled Study. Cosmet 2020, Vol 7, Page 90. 2020;7(4):90. doi:10.3390/COSMETICS7040090

Putra A, Antari AD, Kustiyah AR, et al. Mesenchymal stem cells accelerate liver regeneration in acute liver failure animal model. Biomed Res Ther. 2018;5(11):2802-2810. doi:10.15419/bmrat.v5i11.498

Putra A, Widyatmoko A, Ibrahim S, et al. Case series of the first three severe COVID-19 patients treated with the secretome of hypoxia-mesenchymal stem cells in Indonesia. F1000Research 2021 10228. 2021;10:228. doi:10.12688/f1000research.51191.3

Zhou Y, Yamamoto Y, Xiao Z, Ochiya T. The Immunomodulatory Functions of Mesenchymal Stromal/Stem Cells Mediated via Paracrine Activity. J Clin Med 2019, Vol 8, Page 1025. 2019;8(7):1025. doi:10.3390/JCM8071025

Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science (80- ). 2020;367(6478). doi:10.1126/science.aau6977

An T, Chen Y, Tu Y, Lin P. Mesenchymal Stromal Cell-Derived Extracellular Vesicles in the Treatment of Diabetic Foot Ulcers: Application and Challenges. Stem Cell Rev Reports. 2021;17(2):369-378. doi:10.1007/S12015-020-10014-9/METRICS

Bari E, Ferrarotti I, Saracino L, et al. Mesenchymal Stromal Cell Secretome for Post-COVID-19 Pulmonary Fibrosis: A New Therapy to Treat the Long-Term Lung Sequelae? Cells 2021, Vol 10, Page 1203. 2021;10(5):1203. doi:10.3390/CELLS10051203

Brennan MÁ, Layrolle P, Mooney DJ. Biomaterials Functionalized with MSC Secreted Extracellular Vesicles and Soluble Factors for Tissue Regeneration. Adv Funct Mater. 2020;30(37):1909125. doi:10.1002/ADFM.201909125

Albe Slabi S, Mathé C, Framboisier X, et al. A new SE-HPLC method for simultaneous quantification of proteins and main phenolic compounds from sunflower meal aqueous extracts. Anal Bioanal Chem. 2019;411(10):2089-2099. doi:10.1007/s00216-019-01635-2

Ouyang X, Han X, Chen Z, Fang J, Huang X, Wei H. MSC-derived exosomes ameliorate erectile dysfunction by alleviation of corpus cavernosum smooth muscle apoptosis in a rat model of cavernous nerve injury. doi:10.1186/s13287-018-1003-1

Busatto S, Vilanilam G, Ticer T, et al. Tangential flow filtration for highly efficient concentration of extracellular vesicles from large volumes of fluid. Cells. Published online 2018. doi:10.3390/cells7120273

Yustianingsih V, Sumarawati T, Putra A. Hypoxia enhances self-renewal properties and markers of mesenchymal stem cells. 2019;38(3):164-171. doi:10.18051/UnivMed.2019.v38.164-171

Pandel R, Poljšak B, Godic A, Dahmane R. Skin Photoaging and the Role of Antioxidants in Its Prevention. ISRN Dermatol. 2013;2013:1-11. doi:10.1155/2013/930164

Hermansyah D, Putra A, Munir D, Lelo A, Amalina ND, Alif I. Synergistic Effect of Curcuma longa Extract in Combination with Phyllanthus niruri Extract in Regulating Annexin A2, Epidermal Growth Factor Receptor, Matrix Metalloproteinases, and Pyruvate Kinase M1/2 Signaling Pathway on Breast Cancer Stem Cell. Open Access Maced J Med Sci. 2021;9(A):271-285. doi:10.3889/oamjms.2021.5941

Kupcova Skalnikova H. Proteomic techniques for characterisation of mesenchymal stem cell secretome. Biochimie. 2013;95(12):2196-2211. doi:10.1016/J.BIOCHI.2013.07.015

de Almeida Fuzeta M, Bernardes N, Oliveira FD, et al. Scalable Production of Human Mesenchymal Stromal Cell-Derived Extracellular Vesicles Under Serum-/Xeno-Free Conditions in a Microcarrier-Based Bioreactor Culture System. Front Cell Dev Biol. 2020;8:1197. doi:10.3389/FCELL.2020.553444/BIBTEX

Nojehdehi S, Soudi S, Hesampour A, Rasouli S, Soleimani M, Hashemi SM. Immunomodulatory effects of mesenchymal stem cell–derived exosomes on experimental type-1 autoimmune diabetes. J Cell Biochem. 2018;119(11):9433-9443. doi:10.1002/JCB.27260

Eleuteri S, Fierabracci A. Insights into the Secretome of Mesenchymal Stem Cells and Its Potential Applications. Int J Mol Sci 2019, Vol 20, Page 4597. 2019;20(18):4597. doi:10.3390/IJMS20184597

Ren Y, Zhang S, Wang Y, et al. Effects of purified exosome product on rotator cuff tendon-bone healing in vitro and in vivo. Biomaterials. 2021;276. doi:10.1016/J.BIOMATERIALS.2021.121019

Published
2023-09-20
How to Cite
Putra, A., Alif, I., Prasetio, A., & Prawitasari, S. (2023). Comparison of Two Tangential Flow Filtration Methods in Isolating CD63+/CD9+ Mesenchymal Stem Cell Exosome. International Journal of Cell and Biomedical Science, 2(4), 147-152. Retrieved from https://cbsjournal.com/cbs/article/view/32
Section
Articles