In Vitro Transcription as a Strategy to Enhance Mesenchymal Stem Cell Secretome for Therapeutic Use: An Overview

  • Dendi Krisna Nugraha Lecturer, Biomedical Science Undergraduate Program, Institut Karya Mulia Bangsa (IKMB), Semarang, 50223, Indonesia
  • Ariq Falah 2Graduate Student of Biomedical Sciences, Faculty of Medicine, Universitas Sebelas Maret (UNS), Surakarta, 57126, Indonesia
Keywords: Mesenchymal stem cells (MSCs), secretome, In Vitro Transcription (IVT), mature mRNA, regenerative medicine cell therapy

Abstract

Mesenchymal stem cells (MSCs) have become a cornerstone of regenerative medicine owing to their capacity to secrete a diverse array of bioactive molecules, collectively termed the secretome. The MSC secretome exerts profound immunomodulatory, anti-inflammatory, and trophic effects that underpin much of the therapeutic efficacy observed in MSC-based interventions. Nevertheless, variability in the secretory profile across donors, tissue sources, and culture conditions continues to limit the reproducibility and potency of MSC-derived therapies. Recent advancements in in vitro transcription (IVT) mRNA technology have emerged as a robust and transient platform for the reprogramming of mesenchymal stem cells (MSCs) without the need for genomic integration. Through the use of IVT-mRNA-mediated expression of selected cytokines, growth factors, or homing receptors, MSCs can be endowed with enhanced anti-inflammatory and regenerative capabilities while preserving their native phenotype and viability. This review summarizes current IVT-mRNA–based strategies for engineering the MSC secretome, with an emphasis on augmenting anti-inflammatory cytokines (e.g., IL-10, TSG-6) and growth factors (e.g., VEGF, HGF, FGF2). The review also examines how IVT-mRNA redefines the cellular secretory landscape, outlines key considerations in IVT-mRNA design and optimization, and discusses translational implications for both cell-based and cell-free therapeutic applications. Finally, it underscores persistent challenges, including transient transgene expression, innate immune activation, and delivery inefficiency, and contemplates future prospects for integrating IVT-mRNA technology with advanced biomaterials, cellular priming methodologies, and multifactorial modulation to achieve consistent and potent therapeutic secretomes.

References

1. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage Potential of Adult Human Mesenchymal Stem Cells. Science (1979). 1999;284(5411):143-147. doi:10.1126/science.284.5411.143
2. Galipeau J, Sensébé L. Mesenchymal Stromal Cells: Clinical Challenges and Therapeutic Opportunities. Cell Stem Cell. 2018;22(6):824-833. doi:10.1016/j.stem.2018.05.004
3. Caplan AI. Mesenchymal stem cells. Journal of Orthopaedic Research. 1991;9(5):641-650. doi:10.1002/jor.1100090504
4. Lai RC, Arslan F, Lee MM, et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 2010;4(3):214-222. doi:10.1016/j.scr.2009.12.003
5. Spees JL, Gregory CA, Singh H, et al. Internalized Antigens Must Be Removed to Prepare Hypoimmunogenic Mesenchymal Stem Cells for Cell and Gene Therapy. Molecular Therapy. 2004;9(5):747-756. doi:10.1016/j.ymthe.2004.02.012
6. Human Umbilical Cord Blood Serum/Plasma: Cytokine Profile and Prospective Application in Regenerative Medicine - PubMed. Accessed June 11, 2025. https://pubmed.ncbi.nlm.nih.gov/31761983/
7. Secretion of immunoregulatory cytokines by mesenchymal stem cells - PMC. Accessed June 11, 2025. https://pmc.ncbi.nlm.nih.gov/articles/PMC4178255/
8. Liu L, Gao J, Yuan Y, Chang Q, Liao Y, Lu F. Hypoxia preconditioned human adipose derived mesenchymal stem cells enhance angiogenic potential via secretion of increased VEGF and bFGF. Cell Biol Int. 2013;37(6):551-560. doi:10.1002/cbin.10097
9. Damasceno PKF, de Santana TA, Santos GC, et al. Genetic Engineering as a Strategy to Improve the Therapeutic Efficacy of Mesenchymal Stem/Stromal Cells in Regenerative Medicine. Front Cell Dev Biol. 2020;8. doi:10.3389/fcell.2020.00737
10. Zhen X, Chen W, Tao W. mRNA-based technology for engineered regenerative medicine. Cell Biomaterials. Published online August 2025:100185. doi:10.1016/j.celbio.2025.100185
11. Full article: Modified mRNA as an alternative to plasmid DNA (pDNA) for transcript replacement and vaccination therapy. Accessed June 21, 2025. https://www.tandfonline.com/doi/full/10.1517/14712598.2015.1057563
12. Karikó K, Muramatsu H, Welsh FA, et al. Incorporation of Pseudouridine Into mRNA Yields Superior Nonimmunogenic Vector With Increased Translational Capacity and Biological Stability. Molecular Therapy. 2008;16(11):1833-1840. doi:10.1038/mt.2008.200
13. Levy O, Zhao W, Mortensen LJ, et al. mRNA-engineered mesenchymal stem cells for targeted delivery of interleukin-10 to sites of inflammation. Blood. 2013;122(14):e23-e32. doi:10.1182/blood-2013-04-495119
14. Mesenchymal stem cells overexpressing interleukin-10 attenuate collagen-induced arthritis in mice - PMC. Accessed June 11, 2025. https://pmc.ncbi.nlm.nih.gov/articles/PMC2492894/
15. Mesenchymal stem cells overexpressing interleukin-10 prevent allergic airway inflammation | Stem Cell Research & Therapy | Full Text. Accessed June 11, 2025. https://stemcellres.biomedcentral.com/articles/10.1186/s13287-023-03602-2
16. Yun GH, Park SM, Lim GH, Seo KW, Youn HY. Canine adipose tissue-derived MSCs engineered with mRNA to overexpress TSG-6 and enhance the anti-inflammatory effects in canine macrophages. Front Vet Sci. 2023;10. doi:10.3389/fvets.2023.1134185
17. Al-Saadi J, Waldén M, Sandell M, et al. Endovascular transplantation of mRNA-enhanced mesenchymal stromal cells results in superior therapeutic protein expression in swine heart. Mol Ther Methods Clin Dev. 2024;32(2):101225. doi:10.1016/j.omtm.2024.101225
18. Park BW, Jung SH, Das S, et al. In vivo priming of human mesenchymal stem cells with hepatocyte growth factor–engineered mesenchymal stem cells promotes therapeutic potential for cardiac repair. Sci Adv. 2020;6(13). doi:10.1126/sciadv.aay6994
19. Kim MD, Kim SS, Cha HY, et al. Therapeutic effect of hepatocyte growth factor-secreting mesenchymal stem cells in a rat model of liver fibrosis. Exp Mol Med. 2014;46(8):e110-e110. doi:10.1038/emm.2014.49
20. Vizoso F, Eiro N, Cid S, Schneider J, Perez-Fernandez R. Mesenchymal Stem Cell Secretome: Toward Cell-Free Therapeutic Strategies in Regenerative Medicine. Int J Mol Sci. 2017;18(9):1852. doi:10.3390/ijms18091852
21. Ferreira JR, Teixeira GQ, Santos SG, Barbosa MA, Almeida-Porada G, Gonçalves RM. Mesenchymal Stromal Cell Secretome: Influencing Therapeutic Potential by Cellular Pre-conditioning. Front Immunol. 2018;9. doi:10.3389/fimmu.2018.02837
22. Saparov A, Ogay V, Nurgozhin T, Jumabay M, Chen WCW. Preconditioning of Human Mesenchymal Stem Cells to Enhance Their Regulation of the Immune Response. Ezquer M, ed. Stem Cells Int. 2016;2016(1). doi:10.1155/2016/3924858
23. Kavaldzhieva K, Mladenov N, Markova M, Belemezova K. Mesenchymal Stem Cell Secretome: Potential Applications in Human Infertility Caused by Hormonal Imbalance, External Damage, or Immune Factors. Biomedicines. 2025;13(3):586. doi:10.3390/biomedicines13030586
24. Joshi JM, Verma S, Upadhya R, Bhat S, Seetharam RN. Inflammatory priming of mesenchymal stromal cells enhances its secretome potential through secretion of anti-inflammatory and ECM modulating factors: Insights into proteomic and functional properties. Biochem Biophys Res Commun. 2025;778:152391. doi:10.1016/j.bbrc.2025.152391
25. Song N, Scholtemeijer M, Shah K. Mesenchymal Stem Cell Immunomodulation: Mechanisms and Therapeutic Potential. Trends Pharmacol Sci. 2020;41(9):653-664. doi:10.1016/j.tips.2020.06.009
26. Mathen C, Ghag Sawant M, Gupta R, Dsouza W, Krishna SG. Evaluation of Potential Application of Wharton’s Jelly-Derived Human Mesenchymal Stromal Cells and its Conditioned Media for Dermal Regeneration using Rat Wound Healing Model. Cells Tissues Organs. 2021;210(1):31-44. doi:10.1159/000513895
27. Kavaldzhieva K, Mladenov N, Markova M, Belemezova K. Mesenchymal Stem Cell Secretome: Potential Applications in Human Infertility Caused by Hormonal Imbalance, External Damage, or Immune Factors. Biomedicines. 2025;13(3):586. doi:10.3390/biomedicines13030586
28. Nataliya B, Mikhail A, Vladimir P, et al. Mesenchymal stromal cells facilitate resolution of pulmonary fibrosis by miR-29c and miR-129 intercellular transfer. Exp Mol Med. 2023;55(7):1399-1412. doi:10.1038/s12276-023-01017-w
29. Kuppa SS, Kim HK, Kang JY, Lee SC, Seon JK. Role of Mesenchymal Stem Cells and Their Paracrine Mediators in Macrophage Polarization: An Approach to Reduce Inflammation in Osteoarthritis. Int J Mol Sci. 2022;23(21):13016. doi:10.3390/ijms232113016
30. Chouaib B, Haack-Sørensen M, Chaubron F, Cuisinier F, Collart-Dutilleul PY. Towards the Standardization of Mesenchymal Stem Cell Secretome-Derived Product Manufacturing for Tissue Regeneration. Int J Mol Sci. 2023;24(16):12594. doi:10.3390/ijms241612594
31. Ferreira JR, Teixeira GQ, Santos SG, Barbosa MA, Almeida-Porada G, Gonçalves RM. Mesenchymal Stromal Cell Secretome: Influencing Therapeutic Potential by Cellular Pre-conditioning. Front Immunol. 2018;9. doi:10.3389/fimmu.2018.02837
32. Noronha N de C, Mizukami A, Caliári-Oliveira C, et al. Priming approaches to improve the efficacy of mesenchymal stromal cell-based therapies. Stem Cell Res Ther. 2019;10(1):131. doi:10.1186/s13287-019-1224-y
33. Steinle H, Behring A, Schlensak C, Wendel HP, Avci-Adali M. Concise Review: Application of In Vitro Transcribed Messenger RNA for Cellular Engineering and Reprogramming: Progress and Challenges. Stem Cells. 2017;35(1):68-79. doi:10.1002/stem.2402
34. Perenkov AD, Sergeeva AD, Vedunova M V., Krysko D V. In Vitro Transcribed RNA-Based Platform Vaccines: Past, Present, and Future. Vaccines (Basel). 2023;11(10):1600. doi:10.3390/vaccines11101600
35. Gote V, Bolla PK, Kommineni N, et al. A Comprehensive Review of mRNA Vaccines. Int J Mol Sci. 2023;24(3):2700. doi:10.3390/ijms24032700
36. Zhang J, Liu Y, Li C, et al. Recent Advances and Innovations in the Preparation and Purification of In Vitro-Transcribed-mRNA-Based Molecules. Pharmaceutics. 2023;15(9):2182. doi:10.3390/pharmaceutics15092182
37. Chabanovska O, Galow AM, David R, Lemcke H. mRNA – A game changer in regenerative medicine, cell-based therapy and reprogramming strategies. Adv Drug Deliv Rev. 2021;179:114002. doi:10.1016/j.addr.2021.114002
38. Mu X, Hur S. Immunogenicity of In Vitro -Transcribed RNA. Acc Chem Res. 2021;54(21):4012-4023. doi:10.1021/acs.accounts.1c00521
39. Patel S, Athirasala A, Menezes PP, et al. Messenger RNA Delivery for Tissue Engineering and Regenerative Medicine Applications. Tissue Eng Part A. 2019;25(1-2):91-112. doi:10.1089/ten.tea.2017.0444
40. Drzeniek NM, Kahwaji N, Schlickeiser S, et al. Immuno-engineered mRNA combined with cell adhesive niche for synergistic modulation of the MSC secretome. Biomaterials. 2023;294:121971. doi:10.1016/j.biomaterials.2022.121971
41. Kang DD, Li H, Dong Y. Advancements of in vitro transcribed mRNA (IVT mRNA) to enable translation into the clinics. Adv Drug Deliv Rev. 2023;199:114961. doi:10.1016/j.addr.2023.114961
Published
2025-10-11
How to Cite
Nugraha, D. K., & Falah, A. (2025). In Vitro Transcription as a Strategy to Enhance Mesenchymal Stem Cell Secretome for Therapeutic Use: An Overview. International Journal of Cell and Biomedical Science, 3(9), 270-281. https://doi.org/10.59278/cbs.v3i9.61
Section
Review Articles