Time-Dependent Simulation Identifies Critical Hour Phase of Intestinal Acute Injury in Sepsis Mouse Model

  • Yusrina Istanti Student of Biomedical Sciences Doctoral Program, Faculty of Medicine, Sultan Agung Islamic University (UNISSULA), Semarang, 50112, Indonesia
  • Naufal Sebastian Anggoro Research and Development, Stem Cell and Cancer Research (SCCR) Semarang, 50223, Indonesia
  • Sofian Azalia Husain Student of the Master of Veterinary Science Program, Faculty of Veterinary Medicine (FKH), Universitas Gadjah Mada (UGM), Yogyakarta 55281 Indonesia
  • Salma Yasmine Azzahara Paediatrics Infectious and Tropical Disease Research Group, Department of Child Health, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia
Keywords: Intestinal injury, Time-dependent simulation, Sepsis animal model, Cytokine dynamics, Histopathology

Abstract

Background: Understanding the dynamic process of intestinal injury and repair during sepsis is essential for identifying optimal therapeutic windows. This study aimed to determine the critical time phase of intestinal acute injury by analyzing histological changes over a 24-hour period in a sepsis mouse model. Methods: Mice were divided into four groups—Control, 9 h, 12 h, and 24 h—and intestinal tissue samples were assessed using the Chiu histological scoring system. A time-dependent simulation was conducted to evaluate average changes in tissue damage and to identify key transition points between injury and recovery phases. Statistical analysis was performed using one-way ANOVA followed by post hoc comparisons to determine significant differences among time points. Results: The simulation demonstrated a marked increase in intestinal damage between 9 h and 12 h, followed by partial recovery at 24 h. Statistical analysis revealed a significant difference (p < 0.05) corresponding to this shift. These findings suggest that peak tissue injury occurs around 12 hours post-sepsis induction, preceding the onset of repair mechanisms. Conclusion: The study provides quantitative insight into the temporal progression of intestinal injury in sepsis, identifying the 12–24 hour period as a critical therapeutic window for potential interventions.

References

Schlapbach LJ, Kissoon N, Alhawsawi A, et al. World Sepsis Day: a global agenda to target a leading cause of morbidity and mortality. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2020;319(3):L518-L522. doi:10.1152/ajplung.00369.2020

Salomão R, Ferreira BL, Salomão MC, Santos SS, Azevedo LCP, Brunialti MKC. Sepsis: evolving concepts and challenges. Brazilian Journal of Medical and Biological Research. 2019;52(4). doi:10.1590/1414-431x20198595

Hotchkiss RS, Moldawer LL, Opal SM, Reinhart K, Turnbull IR, Vincent JL. Sepsis and septic shock. Nat Rev Dis Primers. 2016;2(1):16045. doi:10.1038/nrdp.2016.45

Delano MJ, Ward PA. The immune system’s role in sepsis progression, resolution, and long‐term outcome. Immunol Rev. 2016;274(1):330-353. doi:10.1111/imr.12499

Carcillo JA, Shakoory B. Cytokine Storm and Sepsis-Induced Multiple Organ Dysfunction Syndrome. In: Cytokine Storm Syndrome. Springer International Publishing; 2019:451-464. doi:10.1007/978-3-030-22094-5_27

Senousy S, Ahmed AS, El-Daly M, Khalifa M. Cytokines in sepsis: friend or enemy? Journal of advanced Biomedical and Pharmaceutical Sciences. 2021;0(0):29-39. doi:10.21608/jabps.2021.93867.1138

Chaudhry H, Zhou J, Zhong Y, et al. Role of cytokines as a double-edged sword in sepsis. In Vivo. 2013;27(6):669-684.

Fay KT, Ford ML, Coopersmith CM. The intestinal microenvironment in sepsis. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2017;1863(10):2574-2583. doi:10.1016/j.bbadis.2017.03.005

Rowlands BJ, Soong C V., Gardiner KR. The gastrointestinal tract as a barrier in sepsis. Br Med Bull. 1999;55(1):196-211. doi:10.1258/0007142991902213

Alverdy JC, Chang EB. The re-emerging role of the intestinal microflora in critical illness and inflammation: why the gut hypothesis of sepsis syndrome will not go away. J Leukoc Biol. 2008;83(3):461-466. doi:10.1189/jlb.0607372

Gu M, Mei XL, Zhao YN. Sepsis and Cerebral Dysfunction: BBB Damage, Neuroinflammation, Oxidative Stress, Apoptosis and Autophagy as Key Mediators and the Potential Therapeutic Approaches. Neurotox Res. 2021;39(2):489-503. doi:10.1007/s12640-020-00270-5

Obermüller B, Frisina N, Meischel M, et al. Examination of intestinal ultrastructure, bowel wall apoptosis and tight junctions in the early phase of sepsis. Sci Rep. 2020;10(1):11507. doi:10.1038/s41598-020-68109-9

Petrat F, Swoboda S, Groot H de, Schmitz KJ. Quantification of Ischemia-Reperfusion Injury to the Small Intestine Using a Macroscopic Score. Journal of Investigative Surgery. 2010;23(4):208-217. doi:10.3109/08941931003623622

Lilley E, Armstrong R, Clark N, et al. Refinement of Animal Models of Sepsis and Septic Shock. Shock. 2015;43(4):304-316. doi:10.1097/SHK.0000000000000318

Wang Z, Pu Q, Lin P, Li C, Jiang J, Wu M. Design of Cecal Ligation and Puncture and Intranasal Infection Dual Model of Sepsis-Induced Immunosuppression. Journal of Visualized Experiments. 2019;(148). doi:10.3791/59386

Nullens S, Staessens M, Peleman C, et al. Beneficial Effects of Anti-Interleukin-6 Antibodies on Impaired Gastrointestinal Motility, Inflammation and Increased Colonic Permeability in a Murine Model of Sepsis Are Most Pronounced When Administered in a Preventive Setup. PLoS One. 2016;11(4):e0152914. doi:10.1371/journal.pone.0152914

Kahles F, Meyer C, Möllmann J, et al. GLP-1 Secretion Is Increased by Inflammatory Stimuli in an IL-6–Dependent Manner, Leading to Hyperinsulinemia and Blood Glucose Lowering. Diabetes. 2014;63(10):3221-3229. doi:10.2337/db14-0100

Seemann S, Zohles F, Lupp A. Comprehensive comparison of three different animal models for systemic inflammation. J Biomed Sci. 2017;24(1):60. doi:10.1186/s12929-017-0370-8

Claus V, Spleis H, Federer C, et al. Self-emulsifying drug delivery systems (SEDDS): In vivo-proof of concept for oral delivery of insulin glargine. Int J Pharm. 2023;639:122964. doi:10.1016/j.ijpharm.2023.122964

Lerch JP, Gazdzinski L, Germann J, Sled JG, Henkelman RM, Nieman BJ. Wanted dead or alive? The tradeoff between in-vivo versus ex-vivo MR brain imaging in the mouse. Front Neuroinform. 2012;6. doi:10.3389/fninf.2012.00006

Tsuchida T, Wada T, Mizugaki A, et al. Protocol for a Sepsis Model Utilizing Fecal Suspension in Mice: Fecal Suspension Intraperitoneal Injection Model. Front Med (Lausanne). 2022;9. doi:10.3389/fmed.2022.765805

Zhang YN, Chang ZN, Liu ZM, et al. Dexmedetomidine Alleviates Gut-Vascular Barrier Damage and Distant Hepatic Injury Following Intestinal Ischemia/Reperfusion Injury in Mice. Anesth Analg. 2022;134(2):419-431. doi:10.1213/ANE.0000000000005810

Ozawa A, Sakaue M. New decolorization method produces more information from tissue sections stained with hematoxylin and eosin stain and masson-trichrome stain. Annals of Anatomy - Anatomischer Anzeiger. 2020;227:151431. doi:10.1016/j.aanat.2019.151431

Li Y, Li N, Yu X, et al. Hematoxylin and eosin staining of intact tissues via delipidation and ultrasound. Sci Rep. 2018;8(1):12259. doi:10.1038/s41598-018-30755-5

Oltean M, Olausson M. The Chiu/Park scale for grading intestinal ischemia–reperfusion: if it ain’t broke don’t fix it! Intensive Care Med. 2010;36(6):1095-1095. doi:10.1007/s00134-010-1811-y

AlKukhun A, Caturegli G, Munoz-Abraham AS, et al. Use of Fluorescein Isothiocyanate-Inulin as a Marker for Intestinal Ischemic Injury. J Am Coll Surg. 2017;224(6):1066-1073. doi:10.1016/j.jamcollsurg.2016.12.016

Bouquet M, Passmore MR, See Hoe LE, et al. Development and validation of ELISAs for the quantitation of interleukin (IL)-1β, IL-6, IL-8 and IL-10 in ovine plasma. J Immunol Methods. 2020;486:112835. doi:10.1016/j.jim.2020.112835

Yoseph BP, Klingensmith NJ, Liang Z, et al. Mechanisms of Intestinal Barrier Dysfunction in Sepsis. Shock. 2016;46(1):52-59. doi:10.1097/SHK.0000000000000565

Cao YY, Wang ZH, Xu QC, Chen Q, Wang Z, Lu WH. Sepsis induces variation of intestinal barrier function in different phase through nuclear factor kappa B signaling. The Korean Journal of Physiology & Pharmacology. 2021;25(4):375-383. doi:10.4196/kjpp.2021.25.4.375

Schroeder DC, Maul AC, Mahabir E, et al. Evaluation of small intestinal damage in a rat model of 6 Minutes cardiac arrest. BMC Anesthesiol. 2018;18(1):61. doi:10.1186/s12871-018-0530-8

Hernández-Cuellar E, Tsuchiya K, Medina-Contreras O, Valle-Ríos R. The Role of Inflammasomes in LPS and Gram-Negative Bacterial Sepsis. J Clin Med. 2025;14(19):7102. doi:10.3390/jcm14197102

buchholz b. m., bauer a. j. Membrane TLR signaling mechanisms in the gastrointestinal tract during sepsis. Neurogastroenterology & Motility. 2010;22(3):232-245. doi:10.1111/j.1365-2982.2009.01464.x

Zhan L, Zheng J, Meng J, Fu D, Pang L, Ji C. Toll-like receptor 4 deficiency alleviates lipopolysaccharide-induced intestinal barrier dysfunction. Biomedicine & Pharmacotherapy. 2022;155:113778. doi:10.1016/j.biopha.2022.113778

Remick DG, Bolgos G, Copeland S, Siddiqui J. Role of Interleukin-6 in Mortality from and Physiologic Response to Sepsis. Infect Immun. 2005;73(5):2751-2757. doi:10.1128/IAI.73.5.2751-2757.2005

Zhao S, Chen F, Yin Q, Wang D, Han W, Zhang Y. Reactive Oxygen Species Interact With NLRP3 Inflammasomes and Are Involved in the Inflammation of Sepsis: From Mechanism to Treatment of Progression. Front Physiol. 2020;11. doi:10.3389/fphys.2020.571810

Zou Z, Liu B, Zeng L, et al. Cx43 Inhibition Attenuates Sepsis-Induced Intestinal Injury via Downregulating ROS Transfer and the Activation of the JNK1/Sirt1/FoxO3a Signaling Pathway. Mediators Inflamm. 2019;2019:1-13. doi:10.1155/2019/7854389

Giridharan V V., Generoso JS, Lence L, et al. A crosstalk between gut and brain in sepsis-induced cognitive decline. J Neuroinflammation. 2022;19(1):114. doi:10.1186/s12974-022-02472-4

Silva CMS, Wanderley CWS, Veras FP, et al. Gasdermin D inhibition prevents multiple organ dysfunction during sepsis by blocking NET formation. Blood. 2021;138(25):2702-2713. doi:10.1182/blood.2021011525

Liu D, Huang SY, Sun JH, et al. Sepsis-induced immunosuppression: mechanisms, diagnosis and current treatment options. Mil Med Res. 2022;9(1):56. doi:10.1186/s40779-022-00422-y

Figueiredo MJ, de Melo Soares D, Martins JM, et al. Febrile response induced by cecal ligation and puncture (CLP) in rats: involvement of prostaglandin E2 and cytokines. Med Microbiol Immunol. 2012;201(2):219-229. doi:10.1007/s00430-011-0225-y

Cauvi DM, Song D, Vazquez DE, et al. Period of Irreversible Therapeutic Intervention during Sepsis Correlates with Phase of Innate Immune Dysfunction. Journal of Biological Chemistry. 2012;287(24):19804-19815. doi:10.1074/jbc.M112.359562

Villa P, Sartor G, Angelini M, et al. Pattern of cytokines and pharmacomodulation in sepsis induced by cecal ligation and puncture compared with that induced by endotoxin. Clinical Diagnostic Laboratory Immunology. 1995;2(5):549-553. doi:10.1128/cdli.2.5.549-553.1995

Vardon Bounes F, Mémier V, Marcaud M, et al. Platelet activation and prothrombotic properties in a mouse model of peritoneal sepsis. Sci Rep. 2018;8(1):13536. doi:10.1038/s41598-018-31910-8

Yoseph BP, Klingensmith NJ, Liang Z, et al. Mechanisms of Intestinal Barrier Dysfunction in Sepsis. Shock. 2016;46(1):52-59. doi:10.1097/SHK.0000000000000565

Park YJ, Bae J, Yoo JK, et al. Effects of NF-κB Inhibitor on Sepsis Depend on the Severity and Phase of the Animal Sepsis Model. J Pers Med. 2024;14(6):645. doi:10.3390/jpm14060645

Published
2025-10-11
How to Cite
Istanti, Y., Anggoro, N. S., Husain, S. A., & Azzahara, S. Y. (2025). Time-Dependent Simulation Identifies Critical Hour Phase of Intestinal Acute Injury in Sepsis Mouse Model. International Journal of Cell and Biomedical Science, 3(9), 299-308. https://doi.org/10.59278/cbs.v3i9.64
Section
Articles