Bax/Bcl-2 Ratio as the Golden Marker of Apoptosis: Molecular Mechanisms and Regulatory Pathways
Abstract
Apoptosis is an essential biological mechanism responsible for maintaining tissue homeostasis by removing unnecessary or damaged cells. Among the key molecular regulators, the interplay between the pro-apoptotic protein Bax and the anti-apoptotic protein Bcl-2 determines cellular fate. The Bax/Bcl-2 ratio has been recognized as the “golden marker” of apoptosis, representing the fine equilibrium between survival and death signaling pathways within cells. This review aims to provide an updated overview of recent advances in understanding the molecular mechanisms and regulatory networks that control the Bax/Bcl-2 ratio and its significance as a diagnostic and therapeutic biomarker. Relevant studies were systematically identified from PubMed, Scopus, ScienceDirect, and Google Scholar, focusing on publications from 2020 to 2025. Current evidence suggests that the Bax/Bcl-2 ratio is influenced by transcriptional regulation involving p53, NF-κB, and Akt/PI3K pathways, as well as by post-translational modifications such as phosphorylation and ubiquitination that govern mitochondrial membrane permeabilization. Clinically, alterations in this ratio correlate with disease progression, therapeutic response, and prognosis in cancer, neurodegenerative, and renal disorders. Targeting this ratio through modulation of upstream regulators or BH3 mimetics offers promising therapeutic potential. In conclusion, a deeper understanding of the Bax/Bcl-2 ratio provides crucial perspectives for advancing diagnostic innovation and developing targeted therapies for apoptosis-related diseases.
References
Bej, E., Cesare, P., Volpe, A. R., D’Angelo, M., & Castelli, V. (2024). Oxidative Stress and Neurodegeneration: Insights and Therapeutic Strategies for Parkinson’s Disease. Neurology International, 16(3), 502–517. https://doi.org/10.3390/neurolint16030037
Cahyadi, A., Ugrasena, I. D., Andarsini, M., Larasati, M., Aryati, A., & Arumsari, D. (2022). Relationship between Bax and Bcl-2 Protein Expression and Outcome of Induction Phase Chemotherapy in Pediatric Acute Lymphoblastic Leukemia. Asian Pacific Journal of Cancer Prevention, 23(5), 1679–1685. https://doi.org/10.31557/APJCP.2022.23.5.1679
Fekry, G., Hamdy, M., El Razazz, M., & Hafez, H. (2024). AML-350 Role of Protein BAX and BCL-2 in the Prognosis of Acute Myeloid Leukemia in Adults. Clinical Lymphoma Myeloma and Leukemia, 24, S308. https://doi.org/10.1016/S2152-2650(24)01188-1
Green, D. R. (2022). The Mitochondrial Pathway of Apoptosis. Cold Spring Harbor Perspectives in Biology, 14(5), a041038. https://doi.org/10.1101/cshperspect.a041038
Habib, T. N., Altonsy, M. O., Ghanem, S. A., Salama, M. S., & Hosny, M. A. (2024). Optimizing combination therapy in prostate cancer: mechanistic insights into the synergistic effects of Paclitaxel and Sulforaphane-induced apoptosis. BMC Molecular and Cell Biology, 25(1), 5. https://doi.org/10.1186/s12860-024-00501-z
Helaly, N. A., Esheba, N. E., Ammo, D. E. A., Elwan, N. M., & Elkholy, R. A. (2021). High Bax/Bcl-2 ratio is associated with good prognosis and better survival in patients with B cell chronic lymphocytic leukemia. Leukemia Research, 107, 106604. https://doi.org/10.1016/j.leukres.2021.106604
Jedram, O., Maphanao, P., Karnchanapandh, K., Mahalapbutr, P., Thanan, R., & Sakonsinsiri, C. (2024). Corosolic Acid Induced Apoptosis via Upregulation of Bax/Bcl-2 Ratio and Caspase-3 Activation in Cholangiocarcinoma Cells. ACS Omega, 9(1), 1278–1286. https://doi.org/10.1021/acsomega.3c07556
Jiang, Y., Fang, B., Xu, B., & Chen, L. (2020). The RAS‐PI3K‐AKT‐NF‐κB pathway transcriptionally regulates the expression of BCL2 family and IAP family genes and inhibits apoptosis in fibrous epulis. Journal of Clinical Laboratory Analysis, 34(3). https://doi.org/10.1002/jcla.23102
Ke, D., Yu, Y., Li, C., Han, J., & Xu, J. (2022). Phosphorylation of BCL2 at the Ser70 site mediates RANKL-induced osteoclast precursor autophagy and osteoclastogenesis. Molecular Medicine, 28(1), 22. https://doi.org/10.1186/s10020-022-00449-w
Kunac, N., Filipović, N., Kostić, S., & Vukojević, K. (2022). The Expression Pattern of Bcl-2 and Bax in the Tumor and Stromal Cells in Colorectal Carcinoma. Medicina, 58(8), 1135. https://doi.org/10.3390/medicina58081135
Kuwana, T., King, L. E., Cosentino, K., Suess, J., Garcia-Saez, A. J., Gilmore, A. P., & Newmeyer, D. D. (2020). Mitochondrial residence of the apoptosis inducer BAX is more important than BAX oligomerization in promoting membrane permeabilization. Journal of Biological Chemistry, 295(6), 1623–1636. https://doi.org/10.1074/jbc.RA119.011635
Li, K., van Delft, M. F., & Dewson, G. (2021). Too much death can kill you: inhibiting intrinsic apoptosis to treat disease. The EMBO Journal, 40(14). https://doi.org/10.15252/embj.2020107341
Liu, N., Liu, Y., Wang, Y., Feng, C., Piao, M., & Liu, M. (2025). Oxidative cell death in the central nervous system: mechanisms and therapeutic strategies. Frontiers in Cell and Developmental Biology, 13. https://doi.org/10.3389/fcell.2025.1562344
Liu, R., Chen, Y., Liu, G., Li, C., Song, Y., Cao, Z., Li, W., Hu, J., Lu, C., & Liu, Y. (2020). PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell Death & Disease, 11(9), 797. https://doi.org/10.1038/s41419-020-02998-6
Mustafa, M., Ahmad, R., Tantry, I. Q., Ahmad, W., Siddiqui, S., Alam, M., Abbas, K., Moinuddin, Hassan, M. I., Habib, S., & Islam, S. (2024). Apoptosis: A Comprehensive Overview of Signaling Pathways, Morphological Changes, and Physiological Significance and Therapeutic Implications. Cells, 13(22), 1838. https://doi.org/10.3390/cells13221838
Nössing, C., & Ryan, K. M. (2023). 50 years on and still very much alive: ‘Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics.’ British Journal of Cancer, 128(3), 426–431. https://doi.org/10.1038/s41416-022-02020-0
Palabiyik, A. (2025). The role of Bcl‑2 in controlling the transition between autophagy and apoptosis (Review). Molecular Medicine Reports, 32(1), 1–9. https://doi.org/10.3892/mmr.2025.13537
Pravdic, Z., Vukovic, N. S., Gasic, V., Marjanovic, I., Karan-Djurasevic, T., Pavlovic, S., & Tosic, N. (2023). The influence of BCL2, BAX, and ABCB1 gene expression on prognosis of adult de novo acute myeloid leukemia with normal karyotype patients. Radiology and Oncology, 57(2), 239–248. https://doi.org/10.2478/raon-2023-0017
Qian, S., Wei, Z., Yang, W., Huang, J., Yang, Y., & Wang, J. (2022). The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Frontiers in Oncology, 12. https://doi.org/10.3389/fonc.2022.985363
Roufayel, R., Younes, K., Al-Sabi, A., & Murshid, N. (2022). BH3-Only Proteins Noxa and Puma Are Key Regulators of Induced Apoptosis. Life, 12(2), 256. https://doi.org/10.3390/life12020256
Sabet, N., Soltani, Z., Khaksari, M., Iranpour, M., Afshar, R. M., Mehdiabadi, F. M., & Raji-Amirhasani, A. (2022). The effect of two types of diet on apoptosis indexes, lipid profile and histopathological outcome in acute kidney injury during exercise. BMC Nephrology, 23(1), 315. https://doi.org/10.1186/s12882-022-02938-w
Sadati, S., Khalaji, A., Bonyad, A., Khoshdooz, S., Hosseini Kolbadi, K. S., Bahrami, A., Moeinfar, M. S., Morshedi, M., Ghamsaraian, A., Eterafi, M., Eshraghi, R., Khaksary Mahabady, M., & Mirzaei, H. (2025). NF-κB and apoptosis: colorectal cancer progression and novel strategies for treatment. European Journal of Medical Research, 30(1), 616. https://doi.org/10.1186/s40001-025-02734-w
Saddam, M., Paul, S. K., Habib, M. A., Fahim, M. A., Mimi, A., Islam, S., Paul, B., & Helal, M. M. U. (2024). Emerging biomarkers and potential therapeutics of the BCL-2 protein family: the apoptotic and anti-apoptotic context. Egyptian Journal of Medical Human Genetics, 25(1), 12. https://doi.org/10.1186/s43042-024-00485-7
Singh, R., Letai, A., & Sarosiek, K. (2019). Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nature Reviews Molecular Cell Biology, 20(3), 175–193. https://doi.org/10.1038/s41580-018-0089-8
Suraweera, C. D., Hinds, M. G., & Kvansakul, M. (2020). Poxviral Strategies to Overcome Host Cell Apoptosis. Pathogens, 10(1), 6. https://doi.org/10.3390/pathogens10010006
Tang, V., & Wang, J. F. (2014). Mitochondrial dysfunction and oxidative stress in bipolar disorder. Systems Biology of Free Radicals and Antioxidants, 9783642300, 2411–2429. https://doi.org/10.1007/978-3-642-30018-9_83
Tian, X., Srinivasan, P. R., Tajiknia, V., Sanchez Sevilla Uruchurtu, A. F., Seyhan, A. A., Carneiro, B. A., De La Cruz, A., Pinho-Schwermann, M., George, A., Zhao, S., Strandberg, J., Di Cristofano, F., Zhang, S., Zhou, L., Raufi, A. G., Navaraj, A., Zhang, Y., Verovkina, N., Ghandali, M., … El-Deiry, W. S. (2024). Targeting apoptotic pathways for cancer therapy. Journal of Clinical Investigation, 134(14). https://doi.org/10.1172/JCI179570
Üremiş, N., & Üremiş, M. M. (2025). Oxidative/Nitrosative Stress, Apoptosis, and Redox Signaling: Key Players in Neurodegenerative Diseases. Journal of Biochemical and Molecular Toxicology, 39(1). https://doi.org/10.1002/jbt.70133
Vogler, M., Braun, Y., Smith, V. M., Westhoff, M.-A., Pereira, R. S., Pieper, N. M., Anders, M., Callens, M., Vervliet, T., Abbas, M., Macip, S., Schmid, R., Bultynck, G., & Dyer, M. J. (2025). The BCL2 family: from apoptosis mechanisms to new advances in targeted therapy. Signal Transduction and Targeted Therapy, 10(1), 91. https://doi.org/10.1038/s41392-025-02176-0
Wei, H., Wang, H., Wang, G., Qu, L., Jiang, L., Dai, S., Chen, X., Zhang, Y., Chen, Z., Li, Y., Guo, M., & Chen, Y. (2023). Structures of p53/BCL-2 complex suggest a mechanism for p53 to antagonize BCL-2 activity. Nature Communications, 14(1), 4300. https://doi.org/10.1038/s41467-023-40087-2
Yi, X., Wei, R., Huang, S., Wei, P., Li, H., Li, Z., Aschner, M., Jiang, Y., Ou, S., & Li, S. (2025). The effect of resveratrol on lead-induced oxidative damage and apoptosis in HT-22 cells. Food and Chemical Toxicology, 197, 115274. https://doi.org/10.1016/j.fct.2025.115274
Zhang, Z., Hou, L., Liu, D., Luan, S., Huang, M., & Zhao, L. (2024). Directly targeting BAX for drug discovery: Therapeutic opportunities and challenges. Acta Pharmaceutica Sinica B, 14(6), 2378–2401. https://doi.org/10.1016/j.apsb.2024.02.010
Copyright (c) 2025 International Journal of Cell and Biomedical Science

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.




