Targeting Hypoxia-Induced Oxidative Stress via Natural Antioxidant Modulation: From Cellular Signaling to Therapeutic Perspectives

  • Dwi Widyawati Department of Physiology, Faculty of Medicine and Health Science, Sultan Ageng Tirtayasa University, Banten 42118, Indonesia
  • Ghea Farmaning Thias Putri Sultan Ageng Tirtayasa University
  • Rifdah Hanifah Department of Medical Biology, Faculty of Medicine and Health Science, Sultan Ageng Tirtayasa University, Banten 42118, Indonesia
  • Firda Asmaul Husna Department of Medical Biology, Faculty of Medicine and Health Science, Sultan Ageng Tirtayasa University, Banten 42118, Indonesia
  • Nabila Aulia Tsaqifah Department of Public Health, Faculty of Medicine and Health Science, Sultan Ageng Tirtayasa University, Banten 42118, Indonesia
  • Ainina Al Shadrina Department of Pharmacy, Faculty of Medicine and Health Science, Sultan Ageng Tirtayasa University, Banten 42118, Indonesia
Keywords: Hypoxia, Oxidative stress, Nrf2

Abstract

Hypoxia is a fundamental physiological and pathological condition that disrupts cellular homeostasis through the excessive generation of reactive oxygen species (ROS), leading to oxidative stress, inflammation, and organ dysfunction. The imbalance between ROS production and antioxidant defense mechanisms is a key contributor to cell injury and disease progression. This review aims to elucidate the molecular interactions among major redox-sensitive signaling pathways hypoxia-inducible factor 1 (HIF-1), nuclear factor kappa B (NF-κB), and nuclear factor erythroid 2-related factor 2 (Nrf2) in hypoxia-induced oxidative stress, and to highlight the therapeutic potential of natural antioxidants in modulating these pathways. Relevant literature published over the past five years (2020-2025) was systematically reviewed using databases including PubMed, Scopus, and ScienceDirect. The selected studies focused on molecular redox signaling, hypoxia-induced oxidative mechanisms, and the modulatory roles of natural phytochemicals such as Ficus carica bioactive compounds. Recent findings reveal that natural antioxidants regulate redox signaling by activating Nrf2-dependent antioxidant responses, suppressing NF-κB driven inflammation, and stabilizing HIF-1α under hypoxic conditions. Phytochemicals, particularly flavonoids and polyphenols, exhibit strong potential to restore oxidative balance, protect cellular integrity, and reduce hypoxia-induced damage. Modulating hypoxia-induced oxidative stress through natural antioxidant pathways offers a promising therapeutic strategy. A deeper understanding of the molecular crosstalk between redox signaling and phytochemical activity may provide new insights for developing preventive and therapeutic interventions against hypoxia-related disorders.

References

Arias CF, Acosta FJ, Bertocchini F, Fernández-Arias C. Redefining the role of hypoxia-inducible factors (HIFs) in oxygen homeostasis. Commun Biol. 2025;8(1):446. doi:10.1038/s42003-025-07896-1

Guo Z, Tian Y, Liu N, et al. Mitochondrial Stress as a Central Player in the Pathogenesis of Hypoxia-Related Myocardial Dysfunction: New Insights. Int J Med Sci. 2024;21(13):2502-2509. doi:10.7150/ijms.99359

Xiao Y, Liu X, Xie K, et al. Mitochondrial dysfunction induced by HIF‐1α under hypoxia contributes to the development of gastric mucosal lesions. Clin Transl Med. 2024;14(4). doi:10.1002/ctm2.1653

Woźniak Ł, Mierzejewska ŻA, Borys J, Ratajczak-Wrona W, Antonowicz B. Oxidative Stress and Biomarkers in Craniofacial Fractures Healing: From Lipid Peroxidation to Antioxidant Therapies. Antioxidants. 2025;14(9):1070. doi:10.3390/antiox14091070

Ulasov A V., Rosenkranz AA, Georgiev GP, Sobolev AS. Nrf2/Keap1/ARE signaling: Towards specific regulation. Life Sci. 2022;291:120111. doi:10.1016/j.lfs.2021.120111

Widyawati D, Meliala A, Siswanto, Narwidina P, Fitri AT. Dietary Ficus carica Inhibits Cognitive Impairment in Hypoxia-induced Non-alcoholic Fatty Liver Disease. Kobe J Med Sci. 2025;71(1):19-30.

Fitri AT, Meliala A, Widyawati D, Narwidina P, Siswanto S, Sumarno YT. Ficus carica Puree Exerts a Higher Antioxidative Profile in Hypoxic Lungs after Intermittently Inducing Hypoxia in Sprague–Dawley Rats. J Med Sci. 2024;44(6):262-268. doi:10.4103/jmedsci.jmedsci_39_24

Anggraini D, Meliala A, Siswanto, et al. Role of Ficus carica in Alleviating Chronic Hypoxia Impact in Rat’s Lungs. Indones J Hum Nutr. 2025;11(2):142-152. doi:10.21776/ub.ijhn.2024.011.02.3

Kanner J. Polyphenols by Generating H2O2, Affect Cell Redox Signaling, Inhibit PTPs and Activate Nrf2 Axis for Adaptation and Cell Surviving: In Vitro, In Vivo and Human Health. Antioxidants. 2020;9(9):797. doi:10.3390/antiox9090797

Gao W, Guo L, Yang Y, et al. Dissecting the Crosstalk Between Nrf2 and NF-κB Response Pathways in Drug-Induced Toxicity. Front Cell Dev Biol. 2022;9. doi:10.3389/fcell.2021.809952

Guo Q, Jin Y, Chen X, et al. NF-κB in biology and targeted therapy: new insights and translational implications. Signal Transduct Target Ther. 2024;9(1):53. doi:10.1038/s41392-024-01757-9

Akinsulie OC, Shahzad S, Ogunleye SC, et al. Crosstalk between hypoxic cellular micro-environment and the immune system: a potential therapeutic target for infectious diseases. Front Immunol. 2023;14. doi:10.3389/fimmu.2023.1224102

Bae T, Hallis SP, Kwak MK. Hypoxia, oxidative stress, and the interplay of HIFs and NRF2 signaling in cancer. Exp Mol Med. 2024;56(3):501-514. doi:10.1038/s12276-024-01180-8

Cyran AM, Zhitkovich A. HIF1, HSF1, and NRF2: Oxidant-Responsive Trio Raising Cellular Defenses and Engaging Immune System. Chem Res Toxicol. 2022;35(10):1690-1700. doi:10.1021/acs.chemrestox.2c00131

Gaucher J, Vial G, Montellier E, et al. Intermittent Hypoxia Rewires the Liver Transcriptome and Fires up Fatty Acids Usage for Mitochondrial Respiration. Front Med. 2022;9. doi:10.3389/fmed.2022.829979

Wang R, Lv Y, Ni Z, et al. Intermittent hypoxia exacerbates metabolic dysfunction‐associated fatty liver disease by aggravating hepatic copper deficiency‐induced ferroptosis. FASEB J. 2024;38(13). doi:10.1096/fj.202400840R

Hu L, Hu J, Huang Y, et al. Hypoxia-mediated activation of hypoxia-inducible factor-1α in head and neck squamous cell carcinoma: A review. Medicine (Baltimore). 2023;102(1):e32533. doi:10.1097/MD.0000000000032533

Saha S, Saso L. Pharmacological Modulation of Oxidative Stress. Int J Mol Sci. 2023;24(19):14455. doi:10.3390/ijms241914455

Zhang P, Zhang J, Ma C, Ma H, Jing L. 6-hydroxygenistein attenuates hypoxia-induced injury via activating Nrf2/HO-1 signaling pathway in PC12 cells. Sci Rep. 2025;15(1):875. doi:10.1038/s41598-025-85286-7

Huang W, Zhong Y, Gao B, Zheng B, Liu Y. Nrf2-mediated therapeutic effects of dietary flavones in different diseases. Front Pharmacol. 2023;14. doi:10.3389/fphar.2023.1240433

Bellanti F, Coda ARD, Trecca MI, Lo Buglio A, Serviddio G, Vendemiale G. Redox Imbalance in Inflammation: The Interplay of Oxidative and Reductive Stress. Antioxidants. 2025;14(6):656. doi:10.3390/antiox14060656

Romero-Durán MA, Silva-García O, Perez-Aguilar JM, Baizabal-Aguirre VM. Mechanisms of Keap1/Nrf2 modulation in bacterial infections: implications in persistence and clearance. Front Immunol. 2024;15. doi:10.3389/fimmu.2024.1508787

Hoang DM, Pham PT, Bach TQ, et al. Stem cell-based therapy for human diseases. Signal Transduct Target Ther. 2022;7(1). doi:10.1038/s41392-022-01134-4

Ravi, Singh J. Redox imbalance and hypoxia‐inducible factors: a multifaceted crosstalk. FEBS J. 2025;292(15):3833-3848. doi:10.1111/febs.70013

Fazel MF, Abu IF, Mohamad MHN, et al. Physicochemistry, Nutritional, and Therapeutic Potential of Ficus carica – A Promising Nutraceutical. Drug Des Devel Ther. 2024;Volume 18:1947-1968. doi:10.2147/DDDT.S436446

Sengul-Binat H. Fig (Ficus carica L.) and its bioactive compounds. J Agroaliment Process Technol. 2025;2025 (31)(1):65-68. doi:10.59463/JAPT2025.1.7

Wardaya W, Sukmawati D, Ibrahim N, et al. Intermittent Exposure to Hypobaric Hypoxia Increases VEGF, HIF-1α, and Nrf-2 Expressions in Brain Tissue. Indones Biomed J. 2025;17(2):197-206. doi:10.18585/inabj.v17i2.3519

Ning B, Hang S, Zhang W, Mao C, Li D. An update on the bridging factors connecting autophagy and Nrf2 antioxidant pathway. Front Cell Dev Biol. 2023;11. doi:10.3389/fcell.2023.1232241

Abdul-Muneer PM. Nrf2 as a Potential Therapeutic Target for Traumatic Brain Injury. J Integr Neurosci. 2023;22(4). doi:10.31083/j.jin2204081

Esteras N, Abramov AY. Nrf2 as a regulator of mitochondrial function: Energy metabolism and beyond. Free Radic Biol Med. 2022;189:136-153. doi:10.1016/j.freeradbiomed.2022.07.013

Tripathi S, Kharkwal G, Mishra R, Singh G. Nuclear factor erythroid 2-related factor 2 (Nrf2) signaling in heavy metals-induced oxidative stress. Heliyon. 2024;10(18):e37545. doi:10.1016/j.heliyon.2024.e37545

Surai PF, Kochish II, Kidd MT. Redox Homeostasis in Poultry: Regulatory Roles of NF-κB. Antioxidants. 2021;10(2):186. doi:10.3390/antiox10020186

Pan YR, Hsieh YH, Wu TK, Chen HP. Mechanisms of antioxidative and anti-inflammatory treatments in chronic kidney disease and the potential benefits of hydrogen therapy: A narrative review. Tungs’ Med J. 2025;19(Suppl 1):S16-S24. doi:10.4103/ETMJ.ETMJ-D-25-00005

Pizzino G, Irrera N, Cucinotta M, et al. Oxidative Stress: Harms and Benefits for Human Health. Victor VM, ed. Oxid Med Cell Longev. 2017;2017(1). doi:10.1155/2017/8416763

El Ghouizi A, Ousaaid D, Laaroussi H, et al. Ficus carica (Linn.) Leaf and Bud Extracts and Their Combination Attenuates Type-1 Diabetes and Its Complications via the Inhibition of Oxidative Stress. Foods. 2023;12(4):759. doi:10.3390/foods12040759

De Bruno A, Mafrica R, Branca V, Piscopo A, Poiana M. Evaluation of Total Antioxidant Activity and Phenolic Profiles of Calabrian Breba Figs: A Detailed Study of Pulp and Skin from 29 Ficus carica L. Accessions. Foods. 2024;13(24):4035. doi:10.3390/foods13244035

Tkaczenko H, Kurhaluk N. Antioxidant-Rich Functional Foods and Exercise: Unlocking Metabolic Health Through Nrf2 and Related Pathways. Int J Mol Sci. 2025;26(3):1098. doi:10.3390/ijms26031098

Fu M, Yoon KS, Ha J, Kang I, Choe W. Crosstalk Between Antioxidants and Adipogenesis: Mechanistic Pathways and Their Roles in Metabolic Health. Antioxidants. 2025;14(2):203. doi:10.3390/antiox14020203

Yang B, Dong Y, Wang F, Zhang Y. Nanoformulations to Enhance the Bioavailability and Physiological Functions of Polyphenols. Molecules. 2020;25(20):4613. doi:10.3390/molecules25204613

Jalouli M, Rahman MA, Biswas P, et al. Targeting natural antioxidant polyphenols to protect neuroinflammation and neurodegenerative diseases: a comprehensive review. Front Pharmacol. 2025;16. doi:10.3389/fphar.2025.1492517

Published
2025-12-20
How to Cite
Widyawati, D., Putri, G. F. T., Hanifah, R., Husna, F. A., Tsaqifah , N. A., & Shadrina, A. A. (2025). Targeting Hypoxia-Induced Oxidative Stress via Natural Antioxidant Modulation: From Cellular Signaling to Therapeutic Perspectives. International Journal of Cell and Biomedical Science, 4(12), 393-402. https://doi.org/10.59278/cbs.v4i12.76
Section
Review Articles