Effects of Extracellular pH Modulation on HIF-1α, c-Myc, and FOXO1 Expression in Colorectal Cancer Cells
Abstract
Background: The tumor microenvironment (TME) of colorectal cancer (CRC) is characterized by an inverted pH gradient, with acidic extracellular and alkaline intracellular conditions that promote tumor progression and metabolic reprogramming. This altered pH landscape regulates key transcriptional drivers of glycolysis and proliferation, including hypoxia-inducible factor-1 alpha (HIF-1α), c-Myc, and the tumor suppressor Forkhead Box Protein O1 (FOXO1). Understanding how extracellular pH influences these regulators may provide new insights for pH-targeted cancer therapy. Methods: Human colorectal carcinoma HCT116 cells were cultured for 24 hours under six extracellular pH conditions (5.5–9.2). The expression of HIF-1α, c-Myc, and FOXO1 was quantified using quantitative real-time polymerase chain reaction (qPCR), and relative fold changes were analyzed by the 2^-ΔΔCt method. Results: Acidic conditions (pH 5.5–6.7) markedly upregulated HIF-1α and c-Myc while strongly suppressing FOXO1 expression. Conversely, mild alkalinity (pH 8.4) reversed this pattern, reducing HIF-1α and c-Myc while restoring FOXO1 expression, suggesting a transcriptional shift from glycolytic to oxidative metabolism. At higher alkalinity (pH 9.2), the expression of all three genes declined, indicating a threshold beyond which excessive pH elevation becomes detrimental to cellular regulation. Conclusion: Extracellular pH critically modulates metabolic gene expression in CRC cells. Acidic conditions activate glycolytic and oncogenic pathways via HIF-1α and c-Myc, while mild alkalinity suppresses these signals and reinstates tumor-suppressive FOXO1 activity. Controlled alkalinization of the TME may therefore represent a promising adjunctive approach to disrupt tumor metabolism and limit cancer progression.
References
Bray F, Laversanne M, Sung H, Ferlay J, Soerjomataram I, Siegel RL. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer Journal for Clinicians. 2024;74:229–263. doi:10.3322/caac.21834
D’Alterio C, Scala S, Sozzi G, Roz L, Bertolini G. Paradoxical effects of chemotherapy on tumor relapse and metastasis promotion. Seminars in Cancer Biology. 2020. doi:10.1016/j.semcancer.2019.08.019
Boedtkjer E, Pedersen SF. The acidic tumor microenvironment as a driver of cancer. Annual Review of Physiology. 2019;81:103–126. doi:10.1146/annurev-physiol-021119-034627
Wang J, Choi S, Niu X, Cho Y, Zhang W, Li X, Huang H, Liu Y. Lactic acid and an acidic tumor microenvironment suppress anticancer immunity. International Journal of Molecular Sciences. 2020;21:8363. doi:10.3390/ijms21218363
Wang L, Zhang L, Zhang Z, Li Y, Li W, Zhou Q, Chen Y. Advances in targeting tumor microenvironment for immunotherapy. Frontiers in Immunology. 2024;15:1472772. doi:10.3389/fimmu.2024.1472772
Schiliro C, Firestein BL. Mechanisms of metabolic reprogramming in cancer cells supporting enhanced growth and proliferation. Cells. 2021;10(5):1056. doi:10.3390/cells10051056
Granja S, Tavares-Valente D, Queirós O, Baltazar F. Value of pH regulators in the diagnosis, prognosis and treatment of cancer. Seminars in Cancer Biology. 2017;43:17–34. doi:10.1016/j.semcancer.2016.12.003
Ward C, Meehan J, Gray M, Murray A, Argyle DJ, Kunkler IH, Langdon SP. The impact of tumour pH on cancer progression: strategies for clinical intervention. Exploration of Targeted Anti-Tumor Therapy. 2020;1:71–100. doi:10.37349/etat.2020.00005
Bogdanov A, Verlov N, Bogdanov A, Koroleva L, Fedorenko V, Sokolov A, Volkova O, Khokhlova A. Tumor alkalization therapy: misconception or good therapeutics perspective? Frontiers in Oncology. 2024;14:1342802. doi:10.3389/fonc.2024.1342802
Gillies RJ, Ibrahim-Hashim A, Ordway B, Gatenby RA. Back to basic: trials and tribulations of alkalizing agents in cancer. Frontiers in Oncology. 2022;12:981718. doi:10.3389/fonc.2022.981718
Ishii D, Shindo Y, Arai W, Ueno S, Hattori S, Watanabe T, Kimura K. The roles and regulatory mechanisms of tight junction protein Cingulin and transcription factor FOXO1 in human lung adenocarcinoma. International Journal of Molecular Sciences. 2024;25:31411. doi:10.3390/ijms25031411
Zhang B, Li S, Gao L, Zhao X, Li L, Liu Q, Wang Q. FOXO1 is a tumor suppressor in cervical cancer. Genetics and Molecular Research. 2015;14(2):6605–6616. doi:10.4238/2015.June.18.3
Fiore D, Conti A, Amadio G, Zuppi P, Forte M, Fini M, Macchiarelli G. [Study on alkaline therapy and transcription factors; details unavailable in text.]
Markov N, Sabirova S, Sharapova G, Taran E, Fedorenko T, Smirnova Y, Ivanov D. Mitochondrial, metabolic, and bioenergetic adaptations drive plasticity of colorectal cancer cells. Cell Death and Disease. 2025;16:7596. doi:10.1038/s41419-025-07596-y
Nenkov M, Yunxia G, Gassler N, Chen YH. Metabolic reprogramming of colorectal cancer cells and the microenvironment: implication for therapy. International Journal of Molecular Sciences. 2021;22:126262. doi:10.3390/ijms22126262
Sedlak J, Yilmaz Ö, Roper J. Metabolism and colorectal cancer. Annual Review of Pathology. 2022;17:421–447. doi:10.1146/annurev-pathmechdis-031521-041113
Asgharzadeh M, Barar J, Pourseif M, Eskandani M, Jafari S, Omidi Y. Molecular machineries of pH dysregulation in tumor microenvironment: potential targets for cancer therapy. BioImpacts. 2017;7:115–133. doi:10.15171/bi.2017.15
Bogdanov A, Bogdanov A, Chubenko V, Fedorov V, Verlov N, Karpov N. Tumor acidity: from hallmark of cancer to target of treatment. Frontiers in Oncology. 2022;12:979154. doi:10.3389/fonc.2022.979154
Gastelum G, Kraut J, Veena M, Wang D, Ortiz L, Espinoza J, Mendoza A. Acidification of intracellular pH in tumor cells overcomes resistance to hypoxia-mediated apoptosis. Frontiers in Oncology. 2023;13:1268421. doi:10.3389/fonc.2023.1268421
Koltai T, Reshkin SJ, Harguindey S. An Innovative Approach to Understanding and Treating Cancer: Targeting pH. Academic Press; 2020.
Rabinowitz MH. Inhibition of hypoxia-inducible factor prolyl hydroxylase domain oxygen sensors: tricking the body into orchestrated repair responses. Journal of Medicinal Chemistry. 2013;56(23):9369–9402. doi:10.1021/jm400566p
Camagni G, Minervini G, Tosatto SCE. Structural characterization of hypoxia inducible factor α–prolyl hydroxylase domain 2 interaction through MD simulations. International Journal of Molecular Sciences. 2023;24:4710. doi:10.3390/ijms24054710
Chan MC, Ilott N, Schödel J, Hagen T, Gleadle JM, Mole DR, Ratcliffe PJ. Tuning the transcriptional response to hypoxia by inhibiting hypoxia-inducible factor (HIF) prolyl and asparaginyl hydroxylases. Journal of Biological Chemistry. 2016;291:20661–20673. doi:10.1074/jbc.M116.749291
Lawson H, Holt-Martyn J, Dembitz V, Houghton T, Evans A, Cockman ME, Pugh CW, Ratcliffe PJ. The selective prolyl hydroxylase inhibitor IOX5 stabilizes HIF-1α and compromises development and progression of AML. Nature Cancer. 2024;5:916–937. doi:10.1038/s43018-024-00761-w
Guo Z, Yang Y, Li L, Chen C, Huang Y, Xu Y. The novel prolyl hydroxylase-2 inhibitor caffeic acid upregulates hypoxia inducible factor and protects against hypoxia. European Journal of Pharmacology. 2022;175307. doi:10.1016/j.ejphar.2022.175307
Li L, Yan Maerkeya K, Reyanguly D, Han L. LncRNA OIP5-AS1 regulates the Warburg effect through miR-124-5p/IDH2/HIF-1α pathway in cervical cancer. Frontiers in Cell and Developmental Biology. 2021;9:655018. doi:10.3389/fcell.2021.655018
Kim JW, Gao P, Liu Y, Semenza GL, Dang CV. Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce VEGF and metabolic switches HK2 and PDK1. Molecular and Cellular Biology. 2007;27:7381–7393. doi:10.1128/MCB.00440-07
Huang Y, Chen Z, Lu T, Zhang L, Wang H, Zheng S, Li M, Xu Y. HIF-1α switches TGF-β signaling partners to drive glucose metabolic reprogramming in NSCLC. Journal of Experimental and Clinical Cancer Research. 2021;40:188. doi:10.1186/s13046-021-02188-y
Jiramongkol Y, Lam EW. FOXO transcription factor family in cancer and metastasis. Cancer Metastasis Reviews. 2020;39:681–709. doi:10.1007/s10555-020-09883-w
Liu Y, Ao X, Ding W, Ponnusamy M, Wu W, Zhao Y, Wang S, Yu W, Wang J. Critical role of FOXO3a in carcinogenesis. Molecular Cancer. 2018;17:139. doi:10.1186/s12943-018-0856-3
Rani M, Kumari R, Singh S, Raj S, Verma G, Kaur P, Singh A. MicroRNAs as master regulators of FOXO transcription factors in cancer management. Life Sciences. 2023;121535. doi:10.1016/j.lfs.2023.121535
Yadav R, Chauhan A, Li Z, Gan B. FoxO transcription factors in cancer metabolism. Seminars in Cancer Biology. 2018;50:65–76. doi:10.1016/j.semcancer.2018.01.004
Lee S, Shanti A. Effect of exogenous pH on cell growth of breast cancer cells. International Journal of Molecular Sciences. 2021;22(18):9910. doi:10.3390/ijms22189910
Rahman MA, Yadab M, Ali M. Emerging role of extracellular pH in tumor microenvironment as a therapeutic target. Cells. 2024;13:1924. doi:10.3390/cells13221924
Wolff M, Rauschner M, Reime S, Riemann A, Thews O. Role of the mTOR signalling pathway during extracellular acidosis in tumour cells. Advances in Experimental Medicine and Biology. 2022;1395:281–285. doi:10.1007/978-3-031-14190-4_46
Zhang Y, Liang J, Cao N, Li M, Zhao J, Chen J, Tang H. ASIC1α up-regulates MMP-2/9 via PI3K/AKT/mTOR pathway in liver cancer. BMC Cancer. 2022;22:9874. doi:10.1186/s12885-022-09874-w
Tavares-Valente D, Sousa B, Schmitt F, Baltazar F. Disruption of pH dynamics suppresses proliferation and potentiates doxorubicin cytotoxicity. Pharmaceutics. 2021;13:20242. doi:10.3390/pharmaceutics13020242
Copyright (c) 2025 International Journal of Cell and Biomedical Science

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.




